线段不同于直线是无限延申的,所以点到线段的距离需要考虑线段的两端(适用于平行线段最短距离计算,即取两端点到另一线段的距离进行比较即可)
如图有以下三种情况,绿色箭头所表示的线段即为最短距离所处的线段
以上情况均有向量AD=(|AP|*|AB|*cos<AP,AB> / |AB|)*(AB/|AB|)
即向量AD=r*AB
设定dot为向量点积函数,mold为求向量模函数,cross为向量叉乘
设r=dot(AP,AB)/|AB|^2
由上图可知 当r<0时 最短距离为AP
大于1时最短距离为BP
否则则为PD
其中|PD|=|AP|*sin<AP,AB>=|cross(AP,AB)|/|AB|
function distanceParallel(A, B, P) {
// AB为线1已知点坐标,P为线2上一点
let res;
const AB = [A[0] - B[0], A[1] - B[1], A[2] - B[2]];
const AP = [A[0] - P[0], A[1] - P[1], A[2] - P[2]];
const r = dot(AP, AB) / (mold(AB) * mold(AB));
if (r <= 0) {
res = mold(AP);//在BA延长线上
} else if (r >= 1) {
res = mold([B[0] - P[0], B[1] - P[1], B[2] - P[2]]);//在AB延长线上
} else {
// res = mold(cross(AP, AB)) / mold(AB);
res = pointIsOnLine(A, B, P);
}
return res;
}
function pointIsOnLine(A, B, P) {
const AP = [A[0] - P[0], A[1] - P[1], A[2] - P[2]];
const AB = [A[0] - B[0], A[1] - B[1], A[2] - B[2]];
return mold(cross(AP, AB)) / mold(AB);
}