计算三维空间点到线段的最短距离

线段不同于直线是无限延申的,所以点到线段的距离需要考虑线段的两端(适用于平行线段最短距离计算,即取两端点到另一线段的距离进行比较即可)

如图有以下三种情况,绿色箭头所表示的线段即为最短距离所处的线段

以上情况均有向量AD=(|AP|*|AB|*cos<AP,AB> / |AB|)*(AB/|AB|)

即向量AD=r*AB

设定dot为向量点积函数,mold为求向量模函数,cross为向量叉乘

设r=dot(AP,AB)/|AB|^2

由上图可知 当r<0时 最短距离为AP

大于1时最短距离为BP

否则则为PD

其中|PD|=|AP|*sin<AP,AB>=|cross(AP,AB)|/|AB|

function distanceParallel(A, B, P) {
  // AB为线1已知点坐标,P为线2上一点
  let res;
  const AB = [A[0] - B[0], A[1] - B[1], A[2] - B[2]];
  const AP = [A[0] - P[0], A[1] - P[1], A[2] - P[2]];
  const r = dot(AP, AB) / (mold(AB) * mold(AB));
  if (r <= 0) {
    res = mold(AP);//在BA延长线上
  } else if (r >= 1) {
    res = mold([B[0] - P[0], B[1] - P[1], B[2] - P[2]]);//在AB延长线上
  } else {
    // res = mold(cross(AP, AB)) / mold(AB);
    res = pointIsOnLine(A, B, P);
  }
  return res;
}

function pointIsOnLine(A, B, P) {
  const AP = [A[0] - P[0], A[1] - P[1], A[2] - P[2]];
  const AB = [A[0] - B[0], A[1] - B[1], A[2] - B[2]];
  return mold(cross(AP, AB)) / mold(AB);
}

三维空间异面直线距离计算相关:三维空间异面直线最短距离计算_yangyoung4ever的博客-CSDN博客先考虑直线间的关系,与二维直线不同的是还需要考虑异面关系,共面则又分为相交(包括垂直)、平行(共线)等关系,主要困难的在于异面直线的距离计算。若是直接使用坐标值计算不仅复杂还容易出错,这里我们考虑空间向量来实现异面直线间的距离计算。一、判断两直线的大类关系即异面还是共面。找出两直线的法向量PUB(PUB等于两直线向量的叉乘),再分别取两直线各一点生成向量L,判断PUB与L之间夹角是否为90°即可(点积中的cos=0)设定叉乘和点积的计算函数如下// 向量叉乘function cross(https://blog.csdn.net/yangyoung4/article/details/124817530

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值