为什么研究彩票是一种“侮辱智商”的行为?

文章探讨了赌徒谬论,即认为过去的失败会影响未来的获胜概率,这种误解源于对独立事件概率的不理解。独立事件是指事件的结果不受之前事件的影响,例如抛硬币。文章指出,研究彩票中奖和短期股票预测类似,都是赌徒谬论的体现。理解概率论中的独立事件概念有助于避免这种错误思维,并建议将时间用于学习统计概率知识,而非寻找快速致富的捷径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


你有没有在买股票、期货、彩票的时候,在连续好几把上来就亏损的情况下,是不是觉得下一把挣钱的概率很大?


你有没有有过这样的妄想,希望少干活多挣钱,甚至不干活光挣钱。


有这样想法的人当中,有少数人会去做两件事:研究彩票如何中奖,赌博。


这里说的赌博,可不只是去赌场,还包括每天研究各种K线图来预测股票价格的。这类人最长的谈资往往是这样的:

“已经涨了这么久了,下次该跌了吧?”

“这只股票已经连续跌了1周了,所以下周反弹的概率越来越多。”


这样的人不在少数,包括下面这位在微博上有255万粉丝的红人“天津股侠”。




而且越是窘迫的时候,他们越容易采取这种极端方式,希望自己成为那极少数的幸运儿。但结果往往是连最后翻身的资本都没有了。


如果你今天学习了概率思维给我们的第1个智慧:赌徒谬论,就会知道这样的举动有多么的“侮辱智商”。


 什么是赌徒谬论?


参考资源链接:[朴素贝叶斯算法:构建言论过滤器及垃圾邮件过滤应用](https://wenku.csdn.net/doc/518ij33093?utm_source=wenku_answer2doc_content) 朴素贝叶斯算法是一种高效且易于实现的分类方法,在处理在线社区中侮辱性语言检测时非常有用。为了让你更深入地理解如何应用这一算法,我推荐你参考《朴素贝叶斯算法:构建言论过滤器及垃圾邮件过滤应用》这一资源。它将带你一步步了解如何构建实际的过滤器。 首先,你需要准备数据集。一个典型的步骤是收集在线社区的言论,并对它们进行标注,将包含侮辱性语言的言论标记为一类,而将不包含侮辱性语言的言论标记为另一类。然后,你可以使用Python进行数据预处理,这通常包括清洗文本、去除标点符号、停用词,以及进行分词等。接下来,可以采用TF-IDF等技术将文本转化为数值型特征向量。 在模型训练阶段,你将使用这些处理过的数据来训练朴素贝叶斯分类器。Scikit-learn库中提供了bernoulli或multinomial朴素贝叶斯的实现,非常适合处理此类文本分类问题。通过传递训练数据的特征向量和对应的标签给朴素贝叶斯模型,模型会学习如何根据特征向量分配标签。 最后,你需要评估模型的性能。常见的方法包括划分数据集为训练集和测试集,使用准确率、召回率、F1分数等指标来衡量模型预测侮辱性语言的能力。为了进一步提高模型的性能,你可能需要进行参数调优和特征选择,以避免过拟合并提升模型的泛化能力。 当模型训练好之后,你可以用它对在线社区实时更新的言论进行预测,从而过滤掉侮辱性语言。建议在部署模型之前进行充足的测试,确保其稳定性和准确性符合要求。 学习了如何使用朴素贝叶斯算法后,你不仅能够构建言论过滤器,还能加深对机器学习分类算法的理解。如果你希望进一步深化在这一领域的知识,除了参考《朴素贝叶斯算法:构建言论过滤器及垃圾邮件过滤应用》,还可以探索更多关于机器学习和人工智能的高级资源。 参考资源链接:[朴素贝叶斯算法:构建言论过滤器及垃圾邮件过滤应用](https://wenku.csdn.net/doc/518ij33093?utm_source=wenku_answer2doc_content)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值