一文看懂如何用贝叶斯解决实际问题

贝叶斯定理太有用了,不管是在投资领域,还是机器学习,或是日常生活中高手几乎都在用到它。


生命科学家用贝叶斯定理研究基因是如何被控制的;

教育学家突然意识到,学生的学习过程其实就是贝叶斯法则的运用;

基金经理用贝叶斯法则找到投资策略;

Google用贝叶斯定理改进搜索功能,帮助用户过滤垃圾邮件;

无人驾驶汽车接收车顶传感器收集到的路况和交通数据,运用贝叶斯定理更新从地图上获得的信息;

人工智能、机器翻译中大量用到贝叶斯定理。


我准备花一个系列,从下面4个方面来科普下贝叶斯定理。前2次我们聊了:

1.贝叶斯定理有什么用? 

2.什么是贝叶斯定理? 


今天是第3部分:贝叶斯定理的应用案例


前面我们介绍了贝叶斯定理公式,及其背后的思想。现在我们来举个实际例子,你会更加熟悉这个牛瓣的工具。


为了后面的案例计算,我们需要先补充下面这个知识。

 全概率公式


这个公式的作用是计算贝叶斯定理中的P(B)。


假定样本空间S,由两个事件A与A'组成的和。例如下图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。


这时候来了个事件B,如下图:

全概率公式:


它的含义是,如果A和A'构成一个问题的全部(全部的样本空间),那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。


看到这么复杂的公式,记不住没关系,因为我也记不住,下面用的时候翻到这里来看下就可以了。

 贝叶斯定理在判断中的应用


有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。


然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。

问题:这颗巧克力来自1号碗的概率是多少?


好了,下面我就用套路来解决这个问题,到最后我会给出这个套路。


第1步,分解问题


1)要求解的问题:取出的巧克力,来自1号碗的概率是多少?

来自1号碗记为事件A1,来自2号碗记为事件A2

取出的是巧克力,记为事件B,

那么要求的问题就是P(A1|B),即取出的是巧克力,来自1号碗的概率


2)已知信息:

1号碗里有30个巧克力和10个水果糖

2号碗里有20个巧克力和20个水果糖

取出的是巧克力


第2步,应用贝叶斯定理

第3步,求贝叶斯中的2个指标


1)求先验概率


由于两个碗是一样的,所以在得到新信息(取出是巧克力之前),这两个碗被选中的概率相同,因此P(A1)=P(A2)=0.5,(其中A1表示来自1号碗,A2表示来自2号碗)

这个概率就是"先验概率",即没有做实验之前,来自一号碗、二号碗的概率都是0.5。


2)求可能性函数


可能性函数P(B|A1)/P(B)


其中,P(B|A1)表示从一号碗中(A1)取出巧克力(B)的概率。


因为1号碗里有30个水果糖和10个巧克力,所以P(B|A1)=30/(30+10)=75%

现在只有求出P(B)就可以得到答案。根据全概率公式,可以求得P(B)如下图:

图中P(B|A1)是1号碗中巧克力的概率,我们根据前面的已知条件,很容易求出。


同样的,P(B|A2)是2号碗中巧克力的概率,也很容易求出(图中已给出)。

而P(A1)=P(A2)=0.5


将这些数值带入公式中就是小学生也可以算出来的事情了。最后P(B)=62.5%


所以,可能性函数P(A1|B)/P(B)=75%/62.5%=1.2

可能性函数>1.表示新信息B对事情A1的可能性增强了。


3)带入贝叶斯公式求后验概率

将上述计算结果,带入贝叶斯定理,即可算出P(A1|B)=60%


这个例子中我们需要关注的是约束条件:抓出的是巧克力。如果没有这个约束条件在,来自一号碗这件事的概率就是50%了,因为巧克力的分布不均把概率从50%提升到60%。


 贝叶斯定理解决问题的套路


现在,我总结下刚才的贝叶斯定理应用的套路,你就更清楚了,会发现像小学生做应用题一样简单。


第1步. 分解问题


简单来说就像做应用题的感觉,先列出解决这个问题所需要的一些条件,然后记清楚哪些是已知的,哪些是未知的。

1)要求解的问题是什么?

识别出哪个是贝叶斯中的事件A(一般是想要知道的问题),哪个是事件B(一般是新的信息,或者实验结果)

2)已知条件是什么?


第2步.应用贝叶斯定理


第3步,求贝叶斯公式中的2个指标

1)求先验概率

2)求可能性函数

3)带入贝叶斯公式求后验概率

后面我会接着聊以下内容:

3.应用案例2:贝叶斯在疾病检测中的应用

4.生活中的贝叶斯思维


发布了333 篇原创文章 · 获赞 672 · 访问量 55万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览