初学者关于AC自动机的疑问:什么是AC自动机?为什么要学习AC自动机?学习AC自动机需要哪些知识?如何构造AC自动机及其应用?
1. 什么是AC自动机
AC的意思和KMP相似,是由Aho-Corasick这两个人创造的,用于多字符串匹配问题的算法。比如给你一个文本文件,再给你k个目标串,让你寻找这k个目标串是否存在在这个文件中。
2. 为什么要学习AC自动机
相信大家都了解KMP算法,它是用于单模式串的线性匹配算法。它的主要思想是当主串和模式串匹配不成功时,模式串不用从头开始匹配,而是回退到tk处,其中k为满足T0T1..Tk-1=Tj-k+1..Tj-Ttj的最大值。充分利用了模式串本身的性质。KMP的时间复杂度为O(m+k),m为主串长度,k为模式串长度。
若用KMP来做多模式串匹配,复杂度为O(m+k1+m+k2+...m+kk)=(n+km),k为模式串个数,n=sigma(ki),即模式串的总长度之和。可见在多模式串匹配中,采用KMP算法求解就不再是线性的了。哈哈!AC自动机派上用场了,它用于多模式串匹配问题,时间复杂度可以达到O(m+n+z),其中z为主串中模式串的总个数。是不是很有诱惑力?
3. 学习AC自动机需要的知识
要想学好AC自动机,需要真正弄懂KMP算法和Trie树(单词查找树)。
4. 如何构造AC自动机
构造AC自动机分两步:根据模式串构造Trie树;BFS创建失败指针。
所谓失败指针类似于KMP中的next数组,当主串在Trie上进行匹配时,如果当前节点不能继续匹配时,就应当退回到当前节点的失败指针所指向的节点。
在这里主要说下失败指针的构造:首先与根直接相邻的点的失败指针指向根节点,并入队列;设当前节点p1的子节点c1含字符C,沿着这个节点的失败指针走,一直走到某个节点p2,它的某个子节点c2含也字符C,那么把c1的失败指针指向c2,其含义是c1所代表的串的后缀和c2所代表的串的前缀相等且相同部分最长。
5. 在AC自动机上的查询
若当前主串的字符和Trie树上的匹配,看这个节点是否是某个串的结束标志,若是,记录这个节点(注意,还要继续根据该节点的失败指针继续查找,这是因为它的后缀也有可能是模式串,比如在找串yashe中,she和he是两个模式串,它会先找到she,再找到he)。然后沿着路径继续向下走,继续匹配下一个字符;若当前字符不匹配,则去当前节点的失败指针继续寻找;重复这两者中的任意一个,直到主串走到结尾为止。
例:说了这么多,来看看例题吧。
HDU2222,2896,AC自动机裸题。
POJ1204,比前面两题稍微复杂点。附代码。
/**
* 题意:
* 在一个r*c(r,c<=1000)的word puzzle中,寻找m个单词,
* 输出单词的起始位置和方向(8个方向,从上开始顺时针,分别为ABCDEFGH)
* 解:
* 根据单词反向建立ac自动机。在puzzle以8个方向分别查询。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int Max = 1005;
int r,c,w;
char puzzle[Max][Max];
char wd[Max*3];
int len[Max];
int dir[8][2] = {{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1}};//up .... eight directions
char d[8] = {'E','F','G','H','A','B','C','D'};
//
struct Trie_Node
{
Trie_Node* fail;
Trie_Node* next[26];
int value;
Trie_Node()
{
value = 0;
fail = NULL;
memset(next,0,sizeof(next));
}
};
void insertWord(Trie_Node* root, char* s, int len, int seq) //反向建立单词
{
int del;
Trie_Node* p = root;
for(int i = len-1; i >= 0; i--)
{
del = s[i] - 'A';
if(p->next[del] == NULL)
p->next[del] = new Trie_Node();
p = p->next[del];
}
p->value = seq;
}
void build_ac_automachine(Trie_Node* root)
{
int i;
queue<Trie_Node*> que;
root->fail = NULL;
for(i = 0; i < 26; i++)
{
if(root->next[i] != NULL)
{
root->next[i]->fail = root;
que.push(root->next[i]);
}
}
Trie_Node* now;
while(!que.empty())
{
now = que.front();
que.pop();
for(i = 0; i < 26; i++)
{
if(now->next[i] == NULL)
continue;
Trie_Node* p = now->fail;
while(p!=NULL&&p->next[i]==NULL)
p = p->fail;
if(p == NULL)
now->next[i]->fail = root;
else
now->next[i]->fail = p->next[i];
que.push(now->next[i]);
}
}
}
//
int X[Max],Y[Max],D[Max];
void SearchPatterns(Trie_Node* root, int i, int j, int k)
{
int x=i,y=j;
int del;
Trie_Node* now = root;
while(true)
{
if(x<0||x>=r||y<0||y>=c)
break;
del = puzzle[x][y]-'A';
while(now->next[del]==NULL&&now!=root)
now = now->fail;
now = now->next[del];
if(now == NULL)
now = root;
Trie_Node* p = now;
while(p!=root&&p->value)
{
X[p->value] = x;
Y[p->value] = y;
D[p->value] = k;
p->value = 0;
p = p->fail;
}
x += dir[k][0];
y += dir[k][1];
}
}
int main()
{
int i,j;
Trie_Node* root = new Trie_Node();
scanf("%d %d %d",&r,&c,&w);
for(i = 0; i < r; i++)
scanf("%s",puzzle[i]);
for(i = 1; i <= w; i++)
{
scanf("%s",wd);
len[i] = strlen(wd);
insertWord(root,wd,strlen(wd),i);
}
build_ac_automachine(root);
//8个方向上的查询
for(i = 0; i < r; i++)
{
SearchPatterns(root,i,0,2);
SearchPatterns(root,i,c-1,6);
SearchPatterns(root,i,0,3);
SearchPatterns(root,i,c-1,7);
SearchPatterns(root,i,0,1);
SearchPatterns(root,i,c-1,5);
}
for(j = 0; j < c; j++)
{
SearchPatterns(root,r-1,j,0);
SearchPatterns(root,0,j,4);
SearchPatterns(root,0,j,3);
SearchPatterns(root,r-1,j,7);
SearchPatterns(root,r-1,j,1);
SearchPatterns(root,0,j,5);
}
for(i = 1; i <= w; i++)
printf("%d %d %c\n",X[i],Y[i],d[D[i]]);
return 0;
}