利用动态规划求解背包问题
动态规划算法的思路如下:
动态规划算法通常用于求解具有某种最优性质的问题。其基本思路是将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。一般会用一个表来记录所有已解的子问题的答案。
这里要解决的背包问与用贪心算法实现的背包问题不同,这里是0-1背包问题。即,一个背包要么放在袋子中,要么不放在袋子中,不能够部分放入。
算法思路如下:
对于给定的背包总承重weight_limit按照各个物品的规格来进行子问题的划分。在计算过程中,将计算遇到的数结果保存起来,便于后续使用
举例来说,如果背包总承重是40
物品重量 30 17 19
物品价值 32 16 18
在划分子问题的时候,分别用(17,23)->{(17,(17,6)), (17,(19,4))}
(19,21)->{((19,0),(17,4)),((19,0),(19,2)),((17,2),(17,4)),((17,2),(19,2))}
(30,10)->。。。
#include<vector>
#include<iostream>
#include<map>
using namespace std;
class Commodity
{
private:
int _weight;
int _value;
public:
Commodity(int weight,int value):_weight(weight),_value(value){}
int getWeight() const
{
return _weight;
}
int getValue() const
{
return _value;
}
};
int getMaxValue(const vector<Commodity>& things, \
int weight_limit,map<int,int>& dataMap)
{
int maxValue=0;
for(int i=0;i<things.size();i++)
{
int weight=things[i].getWeight();
//如果当前重量大于重量极限,不做处理
if(weight>weight_limit)
continue;
int value=things[i].getValue();
/*
首先检查,当前的这个重量对应的价值是否在map中
如果不在map中,就把这一对值插入到map中
*/
map<int,int>::iterator it=dataMap.find(weight);
if(it==dataMap.end())
dataMap[weight]=value;
/*
然后查看剩下的重量部分有没有value值在map中,如果没有计算之后
将这个值插入到map中,如果有就直接拿出来用
*/
int leftWeight=weight_limit-weight;
it=dataMap.find(leftWeight);
if(it==dataMap.end())
{
int leftMaxValue=getMaxValue(things,leftWeight,dataMap);
dataMap[leftWeight]=leftMaxValue;
if(leftMaxValue+value>maxValue)
maxValue=leftMaxValue+value;
}else
{
if(it->second+value>maxValue)
maxValue=it->second+value;
}
}
return maxValue;
}
int main()
{
vector<Commodity> comds;
map<int,int> dataMap;
comds.push_back(Commodity(30,32));
comds.push_back(Commodity(17,16));
comds.push_back(Commodity(19,18));
cout<<getMaxValue(comds,40,dataMap)<<endl;
vector<Commodity> nextData;
nextData.push_back(Commodity(30,30));
nextData.push_back(Commodity(20,20));
nextData.push_back(Commodity(15,15));
cout<<getMaxValue(nextData,35,dataMap)<<endl;
}