输入单张图片到神经网络

当神经网络训练之后,想拿张图片送到网络中进行测试,我们打开一张图片存储到变量中,

但是,这张图片的数据结构往往与训练时候使用的图片数据结构不同,一般来讲,深度模型的

输入端都是4维张量(batch_size,高度,宽度,色彩通道数量),而一张图片一般是3维结构:

(高度,宽度,色彩通道数量),明显差一个维度,所以下面给出补充维度的方法

x=cv2.imread("./data/val/1_85.jpg",cv2.IMREAD_GRAYSCALE)  
    img = x[0:400, 0:560]
    img = np.atleast_3d(img).transpose(2, 0, 1).astype(np.float32)
    img = (img - img.min()) / (img.max() - img.min())
    #方法0 :增加一个维度
    img = np.array([img])  #把图像数据放到python中括号中,并用numpy转换为np数据类型
    x = torch.from_numpy(img).float()
    #方法一,用numpy的方法,把3维的numpy图像数据,变成4维的torch张量
#    img = img[np.newaxis,:,:,:]  #直接用numpy的np.newaxis参数,增加维度
#    x = torch.from_numpy(img).float()
    #方法二:用torch的unsqueeze(0)函数将3维张量増维,变成4维张量.
#    x = torch.from_numpy(img).float().unsqueeze(0)   #使用pytorch中的unsqueeze(0)函数,在第0维的位置增加一个维度.
    if args.cuda:
      y_pred = model(Variable(x).cuda()).cpu()  #用增加维度后的单张图片数据进行测试,先用gpu计算再转换为cpu格式
    else:
#      print(x.shape)
      y_pred = model(Variable(x)).cpu( )     #用增加维度后的单张图片数据进行测试,使用cpu计算.
    showImg(y_pred.data.numpy(), binary=False, fName='')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值