当神经网络训练之后,想拿张图片送到网络中进行测试,我们打开一张图片存储到变量中,
但是,这张图片的数据结构往往与训练时候使用的图片数据结构不同,一般来讲,深度模型的
输入端都是4维张量(batch_size,高度,宽度,色彩通道数量),而一张图片一般是3维结构:
(高度,宽度,色彩通道数量),明显差一个维度,所以下面给出补充维度的方法
x=cv2.imread("./data/val/1_85.jpg",cv2.IMREAD_GRAYSCALE)
img = x[0:400, 0:560]
img = np.atleast_3d(img).transpose(2, 0, 1).astype(np.float32)
img = (img - img.min()) / (img.max() - img.min())
#方法0 :增加一个维度
img = np.array([img]) #把图像数据放到python中括号中,并用numpy转换为np数据类型
x = torch.from_numpy(img).float()
#方法一,用numpy的方法,把3维的numpy图像数据,变成4维的torch张量
# img = img[np.newaxis,:,:,:] #直接用numpy的np.newaxis参数,增加维度
# x = torch.from_numpy(img).float()
#方法二:用torch的unsqueeze(0)函数将3维张量増维,变成4维张量.
# x = torch.from_numpy(img).float().unsqueeze(0) #使用pytorch中的unsqueeze(0)函数,在第0维的位置增加一个维度.
if args.cuda:
y_pred = model(Variable(x).cuda()).cpu() #用增加维度后的单张图片数据进行测试,先用gpu计算再转换为cpu格式
else:
# print(x.shape)
y_pred = model(Variable(x)).cpu( ) #用增加维度后的单张图片数据进行测试,使用cpu计算.
showImg(y_pred.data.numpy(), binary=False, fName='')