【leetcode】子集(动态规划解法)

本文介绍了一种使用动态规划解决LeetCode子集问题的方法。通过自上而下的问题分解和自下而上的子问题解决,避免了重复子集的出现。示例展示了如何利用该思路为数组{1, 2, 3}生成所有不重复的子集。" 90209133,8272360,思科与华为ACL配置差异对比,"['网络设备', '网络配置', '思科网络', '华为网络', '网络安全']
摘要由CSDN通过智能技术生成

问题描述:

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

输入: nums = [1,2,3]
输出:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

解题思路:

动态规划思路:自上而下分析(问题分解),自下而上解决(根据子问题,计算问题),动态规划问题一般可得出解决问题的递推公式,比如dp[i]=dp[i-1]+dp[i-2]类似递推公式。

本问题的动态规划思路,即是第i个数字的集合是第i-1个数字的集合+第i-1个数字的集合中添加第i个数字,比如:求解{1,2,3}中所有子集,可以先求解{1,2}中所有子集(问题分解),然后复制所求出的子集,并分别添加第3个数字(至下而上解决),即得到整个数组的所有子集。

解题代码如下:

/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *columnSizes array.
 * Note: Both returned array and *columnSizes array must be malloce
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值