C语言实现最小公倍数(lcm)

一、lcm是什么?

定义
最小公倍数 是能被两个数 a 和 b 同时整除的 最小的正整数
eg:

a = 6, b = 8
它们的倍数分别是:
6 的倍数:6, 12, 18, 24, 30, …
8 的倍数:8, 16, 24, 32, …
最小的公共倍数是 24
所以:lcm(6, 8) = 24

二、如何以数学方法求得lcm

那如何使用数学方法得到lcm呢?
此时我们应该想到:
两个整数的乘积 = 它们的最大公约数 × 最小公倍数

首先,我们能想到一点就是:
两个数a和b
a * b一定是a和b的众多公倍数之一
但无法确保a * b一定是最小公倍数,除非a和b两者互质互质是指:a和b的公因子为1)

所以对于两个整数的乘积 = 它们的最大公约数 × 最小公倍数
证明如下

我们假设有两个正整数:
a 和 b
并设它们的最大公约数是:
g = gcd(a, b)
把 a 和 b 都写成 g 的倍数:
a = g × m
b = g × n
(n,m互质)
所以n,m的最小公倍数为n * m
a,b有公因数g
所以a和b的最小公倍数为:
lcm(a , b)=g * n * m
a * b = g* n * g * m
gcd(a , b) * lcm(a , b)= g * (g * n * m)
所以:
a * b = gcd(a , b) * lcm(a , b)
lcm(a , b) = a * b / gcd(a , b)

三、C语言代码实现

gcd函数

int gcd(int a,int b)
{
return b==0 ? a : gcd(b,a%b);
}


lcm函数

int lcm(int a,int b)
{
return a*b/gcd(a,b);
}

完整代码

#include <bits/stdc++.h>
using namespace std;

// 计算最大公约数(gcd),使用欧几里得算法
int gcd(int a, int b) 
{
    return b == 0 ? a : gcd(b, a % b);
}

// 计算最小公倍数(lcm)
int lcm(int a, int b) 
{
    return a * b / gcd(a, b);
}

int main() {
   int a, b;
   cin>>a>>b;
   cout<<lcm(a,b);

    return 0;
}

最大公约数gcd介绍:C语言实现最大公约数(gcd)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值