最小公倍数(lcm)
一、lcm是什么?
定义:
最小公倍数 是能被两个数 a 和 b 同时整除的 最小的正整数
eg:
a = 6, b = 8
它们的倍数分别是:
6 的倍数:6, 12, 18, 24, 30, …
8 的倍数:8, 16, 24, 32, …
最小的公共倍数是 24
所以:lcm(6, 8) = 24
二、如何以数学方法求得lcm
那如何使用数学方法得到lcm呢?
此时我们应该想到:
两个整数的乘积 = 它们的最大公约数 × 最小公倍数
首先,我们能想到一点就是:
两个数a和b
a * b一定是a和b的众多公倍数之一
但无法确保a * b一定是最小公倍数,除非a和b两者互质(互质是指:a和b的公因子为1)
所以对于两个整数的乘积 = 它们的最大公约数 × 最小公倍数
证明如下:
我们假设有两个正整数:
a 和 b
并设它们的最大公约数是:
g = gcd(a, b)
把 a 和 b 都写成 g 的倍数:
a = g × m
b = g × n
(n,m互质)
所以n,m的最小公倍数为n * m
a,b有公因数g
所以a和b的最小公倍数为:
lcm(a , b)=g * n * m
a * b = g* n * g * m
gcd(a , b) * lcm(a , b)= g * (g * n * m)
所以:
a * b = gcd(a , b) * lcm(a , b)
lcm(a , b) = a * b / gcd(a , b)
三、C语言代码实现
gcd函数
int gcd(int a,int b)
{
return b==0 ? a : gcd(b,a%b);
}
lcm函数
int lcm(int a,int b)
{
return a*b/gcd(a,b);
}
完整代码
#include <bits/stdc++.h>
using namespace std;
// 计算最大公约数(gcd),使用欧几里得算法
int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
// 计算最小公倍数(lcm)
int lcm(int a, int b)
{
return a * b / gcd(a, b);
}
int main() {
int a, b;
cin>>a>>b;
cout<<lcm(a,b);
return 0;
}
最大公约数gcd介绍:C语言实现最大公约数(gcd)