【题目描述】
有 N 个人要参加国际象棋比赛,该比赛要进行 K 场对弈。
每个人最多参加两场对弈,最少参加零场对弈。
每个人都有一个与其他人不相同的等级(用一个正整数来表示)。
在对弈中,等级高的人必须用黑色的棋子,等级低的人必须用白色的棋子。每人最多只能用一次黑色的棋子和一次白色的棋子。
为了增加比赛的可观度,观众希望 K 场对弈中双方的等级差的总和最小。
比如有 7 个选手,他们的等级分别是 30;17;26;41;19;38;18,要进行 3 场比赛。最好的安排是 Plays 2 vs Plays 7,Plays 7 vs Plays 5,Plays 6 vs Plays 4,此时等级差的总和等于(18-17)+(19-18)+(41-38)=5 达到最小。
【输入格式】
第一行两个正整数 N,K;接下来有 N 行,第 i 行表示第 i+1 个人等级。
【输出格式】输出仅一行为最小的等级差的总和。
【样例输入】
7 3
30
17
26
41
19
38
18
【样例输出】
5
【数据规模】
在 90%的数据中,1<=N<=3000;
在 100%的数据中,1<=N<=100000;
保证所有输入数据中等级的值小于 109,1<=K<=N-1。
分析:使用两次排序
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 100000
using namespace std;
long long a[MAXN+10],b[MAXN+10];
int main()
{
long long n,k,i,s=0;
cin>>n>>k;
for(i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+1+n);
for(i=1;i<n;i++)
{
b[i]=a[i+1]-a[i];
}
sort(b+1,b+n);//对n-1个数进行排序
i=1;
while(k--)
{
s=s+b[i];
i++;
}
cout<<s<<endl;
return 0;
}