象棋比赛(排序)

【题目描述】

有 N 个人要参加国际象棋比赛,该比赛要进行 K 场对弈。

每个人最多参加两场对弈,最少参加零场对弈。

每个人都有一个与其他人不相同的等级(用一个正整数来表示)。

在对弈中,等级高的人必须用黑色的棋子,等级低的人必须用白色的棋子。每人最多只能用一次黑色的棋子和一次白色的棋子。

为了增加比赛的可观度,观众希望 K 场对弈中双方的等级差的总和最小。

比如有 7 个选手,他们的等级分别是 30;17;26;41;19;38;18,要进行 3 场比赛。最好的安排是 Plays 2 vs Plays 7,Plays 7 vs Plays 5,Plays 6 vs Plays 4,此时等级差的总和等于(18-17)+(19-18)+(41-38)=5 达到最小。

【输入格式】

第一行两个正整数 N,K;接下来有 N 行,第 i 行表示第 i+1 个人等级。

【输出格式】输出仅一行为最小的等级差的总和。

【样例输入】

7 3

30

17

26

41

19

38

18

【样例输出】

5

【数据规模】

在 90%的数据中,1<=N<=3000;

在 100%的数据中,1<=N<=100000;

保证所有输入数据中等级的值小于 109,1<=K<=N-1。


分析:使用两次排序


#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 100000
using namespace std;
long long a[MAXN+10],b[MAXN+10];
int main()
{
	long long n,k,i,s=0;
	cin>>n>>k;
	for(i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	sort(a+1,a+1+n);
	for(i=1;i<n;i++)
	{
		b[i]=a[i+1]-a[i]; 
	}
	sort(b+1,b+n);//对n-1个数进行排序
	i=1;
	while(k--)
	{
		s=s+b[i];
		i++;
	}
	cout<<s<<endl;
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值