目录
2.1 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解
1.题目
给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
2.方法实现
2.1 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
max = nums[0]
for i in range(0,len(nums)):
for j in range(i,len(nums)):
sum = 0
for k in range(i,j+1):
sum += nums[k]
if sum >max:
max = sum
return max
sl = Solution()
print(sl.maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
print(sl.maxSubArray([7,1,-3,4,1,1,2,1,-5,4]))
2.2 终级暴力解法,时间复杂度为O(n^3)
思路:
从头到尾的遍历,然后选定一个元素,不断累加后面的元素,举个例子
-2 -2+1 -2+1-3 ...
1 1-3 1-3+4 ...
-3 -3+4 -3+4-1 ..
然后从每两个就进行比较,如果sum>max,就把sum的值赋给max,一直重复下去,直到所有的循环遍历完。
从下图我们可以看见,当数组比较小的时候可以通过,但是当数比较大的时候,就会超出时间限制了。
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 0:
return 0
current_Sum = max_Sum = nums[0]
for i in range(1, len(nums)):
current_Sum = max(current_Sum + nums[i], nums[i])
max_Sum = max(max_Sum, current_Sum)
return max_Sum
sl = Solution()
print(sl.maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
print(sl.maxSubArray([7,1,-3,4,1,1,2,1,-5,4]))
2.3 暴力解法----时间复杂度o(n^2)
1.首先判断下传入的数组是否为空,如果是,直接返回0
2.定义当前的最大和以及最大子数组的和,之所以赋值为数组第一个元素,而不是0,是因为可以减少代码量,不用判断数组的长度为1 的时候。
3.接下来遍历其他元素,只记录最大和即可。首先判断当前的最大和加上当前元素与当前元素谁比较大,保留下最大的一个作为当前的最大和。
4.然后再与最终的max_num做比较,保留所有最大值里的最大的一个。
5.返回最大子数组之和
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 0:
return 0
for i in range(1,len(nums)):
current_num=max(nums[i]+nums[i-1],nums[i])
nums[i]=current_num
return max(nums)
sl = Solution()
print(sl.maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
print(sl.maxSubArray([7,1,-3,4,1,1,2,1,-5,4]))
2.4 动态规划-----时间复杂度o(n)
思路:设sum[i]为以第i个元素结尾且和最大的连续子数组。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,即sum[i]
= max(sum[i-1] + a[i], a[i])。可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小。
class Solution {
public int maxSubArray(int[] nums) {// 动态规划法
int sum=nums[0];
int n=nums[0];
for(int i=1;i<nums.length;i++) {
if(n>0)n+=nums[i];
else n=nums[i];
if(sum<n)sum=n;
}
return sum;
}
}