【深度学习基础知识 - 17】模型不收敛的原因以及处理方法

模型不收敛通常指模型在训练过程中无法收敛,这并不能说明模型无效,可以从以下几个方面分析。

模型不收敛的原因以及处理方法

  • 数据量过大,而模型过小。
  • 学习率设置过大,导致了loss震荡,进而导致模型无法收敛。
  • 数据分布较为复杂,没有进行归一化设置,导致每次迭代模型都往不同的方向上优化。
  • 可能出现了梯度爆炸或者梯度消失,可以看梯度消失和梯度爆炸的解决方法.
  • 代码是不是有bug,导致迭代的时候优化器没有进行参数的更新。

博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值