【深度学习基础知识 - 21】加快模型训练速度的方法

本文介绍了加快深度学习模型训练速度的五种实用方法:合理超参数调整(如BatchSize和学习率)、权值共享、软件包升级、多卡训练与数据并行以及混合精度训练。强调关注训练速度对科研、竞赛和企业成本的重要影响,通过实例展示了优化策略如何显著节省时间和成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习任务中,虽然可以通过堆叠参数、设计更复杂的结构来提高模型的表征能力,但这也会导致模型的计算量增加,训练时间延长,大大降低模型的产出效率。这篇文章根据博主的经验简单介绍一些加快模型训练速度的方法,以及为什么需要关注模型的训练速度。

加快深度学习模型训练速度的方法

1. 合理的超参数设计

  • BatchSize。每次迭代batch的大小是影响每次推理速度的主要因素,而batchsize并非越大越好,一个经验性的可选数值是32、64、128,一般来说,每个batch的大小一旦超过64,继续增大batch带来的性能收益就微乎其微了,因此可以通过实验尝试一下这三个数值,在达到同样的性能前提下让batch尽可能的小,这也会给显存留下更大的空间,进而可以尝试更多的模型设计方式。
  • epoch、学习率策略。迭代次数和学习率这两个参数需要放在一起讲,我们在挑选这两个参数时,需要每100次迭代(或者其他)保存一次模型,然后把这些模型的精度曲线、loss、和当前的学习率画到一张图像中。从图像中就可以发现,在某些学习率设置下,可能训练几个epoch模型的性能就不会继续增加了,loss也不会降低,因此找到这个平衡点之后就可以将当前学习率下的后续epoch舍弃掉,进一步降低学习率训练。一个经验性的总结是:更小的学习率通常只需要更少的epoch。因此,可以通过修改学习率和训练epoch的策略来达到相同精度的前提下降低训练时间。

2. 权值共享

  • 每轮迭代的推理速度和模型的参数量、计算量息息相关,而通过设置参数权值共享,可以降低总的参数量和计算量,另外如te
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值