【深度学习基础知识 - 20】ReLU的特点和使用场景

ReLU是深度学习中常用的激活函数,因其在输入大于零时梯度恒为1,能有效缓解梯度消失问题,加速网络训练。此外,尽管在输出层可能会选择sigmoid确保输出范围在0到1之间,但ReLU在隐藏层的使用通常能提高模型的性能。博主分享了ReLU的特点和使用场景,并鼓励关注深度学习基础及实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ReLU是深度学习任务中常见的激活函数,这里简单介绍它的特点和使用场景。

ReLU的特点

  • ReLU是一个分段函数,当输入小于零的时候,输出为零,当输入大于零的时候,将输入值作为输出。

ReLU的使用场景

  • 主要用于避免梯度消失和梯度爆炸。对于梯度消失,因为sigmoid的梯度最大值只有0.25,在链式求导过程中可能就会导致梯度消失,而ReLU在激活函数大于零的时候梯度恒为1,因此可以有效避免梯度消失和梯度爆炸的现象。点我看梯度消失和梯度爆炸的概念和解决方案
  • 另一方面,采用ReLU激活函数能够使得网络的收敛速度加快。
  • 但是如果说希望网络最后输出一张图片,那么肯定是希望这张图像的像素在0到1之间,这个时候仍然可以在输出层采用sigmoid激活函数,将网络的输出限制到0到1之间。

博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值