Caffe
yanzi6969
这个作者很懒,什么都没留下…
展开
-
Caffe学习系列(7):solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为# caffe train --solver=*_slover.prototxt在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forwar转载 2017-05-11 09:38:17 · 694 阅读 · 0 评论 -
Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写
转自:http://www.cnblogs.com/denny402/p/5073427.html深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细转载 2017-05-10 14:42:26 · 661 阅读 · 0 评论 -
Caffe学习系列(5):其它常用层及参数
转自:http://www.cnblogs.com/denny402/p/5072746.html本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计算大致是相同的。softmax是一个转载 2017-05-10 10:26:55 · 650 阅读 · 0 评论 -
Caffe学习系列(4):激活层(Activiation Layers)及参数
转自:http://www.cnblogs.com/denny402/p/5072507.html在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w转载 2017-05-09 16:49:06 · 670 阅读 · 0 评论 -
Caffe学习系列(3):视觉层(Vision Layers)及参数
转自:http://www.cnblogs.com/denny402/p/5071126.html所有的层都具有的参数,如name, type, bottom, top和transform_param请参看上一篇文章。本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalizatio转载 2017-05-05 15:47:59 · 696 阅读 · 0 评论 -
caffe学习系列(10):如何测试caffe训练出来的模型
方法一:caffe自带了测试命令,只需在caffe根目录输入:~/caffe-master$ ./build/tools/caffe test\ -model examples/mnist/lenet_train_test.prototxt \-weights examples/mnist/lenet_iter_10000.caffemodel\ -iteratio转载 2017-05-17 15:26:09 · 1358 阅读 · 0 评论 -
Caffe学习系列(2):数据层及参数
转自:http://www.cnblogs.com/denny402/p/5070928.html要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一层又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多转载 2017-05-04 14:45:45 · 672 阅读 · 0 评论 -
caffe windows 学习第一步:编译和安装(vs2012+win 64)
转自:http://www.cnblogs.com/denny402/p/5041060.htm没有GPU,没有linux, 只好装caffe的windows版本了。我的系统是win10(64位),vs 2012版本,其它什么都没有装,因此会需要一切的依赖库。其实操作系统只要是64位就行了,无所谓版本,win7,win8,win10都行.1、安装vs2012。转载 2017-05-04 10:51:36 · 668 阅读 · 0 评论 -
caffe windows学习:第一个测试程序
caffe windows编译成功后,就可以开始进行测试了。如果还没有编译成功的,请参考上一篇文章。一般第一个测试都是建议对手写字体minist进行识别。这个测试放在根目录下的 .\examples\mnist\ 文件夹内。1、下载数据。程序本身不带测试数据,需要去下载,测试数据为leveldb格式。你可以直接双击运行“get_mnist_leveldb.bat” 这个脚本自动下转载 2017-05-04 11:03:19 · 767 阅读 · 0 评论 -
Caffe学习系列(9):运行caffe自带的两个简单例子
转自:http://www.cnblogs.com/denny402/p/5075490.html为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载。但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了。注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错1、mnist实转载 2017-05-11 11:19:14 · 668 阅读 · 0 评论 -
Caffe学习系列(8):solver优化方法
转自:http://www.cnblogs.com/denny402/p/5074212.html上文提到,到目前为止,caffe总共提供了六种优化方法:Stochastic Gradient Descent (type: "SGD"),AdaDelta (type: "AdaDelta"),Adaptive Gradient (type: "AdaGrad"),Adam (t转载 2017-05-11 11:09:41 · 731 阅读 · 0 评论 -
CNN参数个数和连接个数计算详解
转自:http://www.cnblogs.com/ooon/p/5415888.html 之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了减少参数规模,加快训练速度,CNN应运而生。CNN就像辟邪剑谱一样,正常人练得很转载 2017-09-18 15:29:31 · 15302 阅读 · 2 评论