Mask RCNN之FCN

转自:https://blog.csdn.net/shenxiaolu1984/article/details/51348149

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

这里写图片描述

本文是深度学习应用于图像分割的代表作,作为Oral发表于CVPR 2015,在许多教程中都被推荐(例如Li Feifei在Standford的视觉识别CNN)。第二作者Evan Shelhamer也是Caffe的首席开发者。 
本文在图像分割问题中应用了当下CNN的几种最新思潮,在PASCAL VOC分割任务上IU(交比并)达到62.2%,速度达到5fps。提供了基于Caffe的模型和测试python代码

辨:两种分割任务 
semantic segmentation - 只标记语义。下图中。 
instance segmentation - 标记实例和语义。下图右。 
本文研究第一种:语义分割

这里写图片描述

核心思想

本文包含了当下CNN的三个思潮 
- 不含全连接层(fc)的全卷积(fully conv)网络。可适应任意尺寸输入。 
- 增大数据尺寸的反卷积(deconv)层。能够输出精细的结果。 
- 结合不同深度层结果的跳级(skip)结构。同时确保鲁棒性和精确性。

网络结构

网络结构如下。输入可为任意尺寸图像彩色图像;输出与输入尺寸相同,深度为:20类目标+背景=21。 
这里写图片描述

全卷积-提取特征

虚线上半部分为全卷积网络。(蓝:卷积,绿:max pooling)。对于不同尺寸的输入图像,各层数据的尺寸(height,width)相应变化,深度(channel)不变。 
这部分由深度学习分类问题中经典网络AlexNet1修改而来。只不过,把最后两个全连接层(fc)改成了卷积层。

论文中,达到最高精度的分类网络是VGG16,但提供的模型基于AlexNet。此处使用AlexNet便于绘图。

逐像素预测

虚线下半部分中,分别从卷积网络的不同阶段,以卷积层(蓝色×3)预测深度为21的分类结果。

例:第一个预测模块 
输入16*16*4096,卷积模板尺寸1*1,输出16*16*21。 
相当于对每个像素施加一个全连接层,从4096维特征,预测21类结果。

反卷积-升采样

下半部分,反卷积层(橙色×3)可以把输入数据尺寸放大。和卷积层一样,升采样的具体参数经过训练确定。

例:反卷积2 
这里写图片描述 

输入:每个像素值等于filter的权重 

输出:步长为stride,截取的宽度为pad。


输入:2*2

计算过程:2+2*2-3+1

输出:4

VGG16不同层卷积提取出来后经过反卷积与上采样得到的图片。

跳级结构

下半部分,使用逐数据相加(黄色×2),把三个不同深度的预测结果进行融合:较浅的结果更为精细,较深的结果更为鲁棒。 
在融合之前,使用裁剪层(灰色×2)统一两者大小。最后裁剪成和输入相同尺寸输出。

训练

训练过程分为四个阶段,也体现了作者的设计思路,值得研究。

第1阶段

这里写图片描述 
以经典的分类网络为初始化。最后两级是全连接(红色),参数弃去不用。

第2阶段

这里写图片描述 
从特征小图(16*16*4096)预测分割小图(16*16*21),之后直接升采样为大图。 
反卷积(橙色)的步长为32,这个网络称为FCN-32s。 
这一阶段使用单GPU训练约需3天。

第3阶段

这里写图片描述 
升采样分为两次完成(橙色×2)。 
在第二次升采样前,把第4个pooling层(绿色)的预测结果(蓝色)融合进来。使用跳级结构提升精确性。 
第二次反卷积步长为16,这个网络称为FCN-16s。 
这一阶段使用单GPU训练约需1天。

第4阶段

这里写图片描述 
升采样分为三次完成(橙色×3)。 
进一步融合了第3个pooling层的预测结果。 
第三次反卷积步长为8,记为FCN-8s。 
这一阶段使用单GPU训练约需1天。

较浅层的预测结果包含了更多细节信息。比较2,3,4阶段可以看出,跳级结构利用浅层信息辅助逐步升采样,有更精细的结果。 
这里写图片描述

其他参数

minibatch:20张图片 
learning rate:0.001 
初始化: 
分类网络之外的卷积层参数初始化为0。 
反卷积参数初始化为bilinear插值。最后一层反卷积固定位bilinear插值不做学习。

结论

总体来说,本文的逻辑如下: 
- 想要精确预测每个像素的分割结果 
- 必须经历从大到小,再从小到大的两个过程 
- 在升采样过程中,分阶段增大比一步到位效果更好 
- 在升采样的每个阶段,使用降采样对应层的特征进行辅助

类似思想在后续许多论文中都有应用,例如用于姿态分析的3


  1. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 
  2. 图像引自Li Feifei的CNN课程16年第13讲。 
  3. Newell, Alejandro, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human pose estimation.” arXiv preprint arXiv:1603.06937 (2016). 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值