文章目录
kafka broker 工作流程
zookeeper存储的 kafka 信息
在 zookeeper 的服务端存储 kafka 相关信息
- /kafka/brokers/ids
[0,1,2] 记录有哪些服务器
- /kafka/brokers/topics/first/partitions/0/state
{"leader":1,"isr":[0,1,2]} 记录谁是leader,有哪些服务可用
- /kafka/controller
{"brokerid": 0} 辅助选举leader
kafka broker 总体工作流程
1)模拟 Kafka 上下线,观察 Zookeeper 中数据变化
kafka 的三个节点已经启动
查看 /brokers/ids 路径上的节点
查看 /controller
查看 /brokers/topics/third/partitions/0/state 路径上的数据
停掉某一个节点的kafka,再次查看
重新启动再次查看
broker 重要参数
参数名称 | 描述 |
---|---|
replica.lag.time.max.ms | ISR 中,如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值,默认 30s 。 |
auto.leader.rebalance.enable | 默认是 true。 自动 Leader Partition 平衡。leader.imbalance.per.broker.percentage 默认是10% 。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。 |
leader.imbalance.check.interval.seconds | 默认值 300 秒 。检查 leader 负载是否平衡的间隔时间。 |
log.segment.bytes | Kafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分 成块的大小,默认值 1G 。 |
log.index.interval.bytes | 默认 4kb ,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 |
log.retention.hours | Kafka 中数据保存的时间,默认 7 天 。 |
log.retention.minutes | Kafka 中数据保存的时间,分钟级别 ,默认关闭。 |
log.retention.ms | Kafka 中数据保存的时间,毫秒级别 ,默认关闭。 |
log.retention.check.interval.ms | 检查数据是否保存超时的间隔,默认是 5 分钟 。 |
log.retention.bytes | 默认等于-1,表示无穷大 。超过设置的所有日志总大小,删除最早的 segment。 |
log.cleanup.policy | 默认是 delete ,表示所有数据启用删除策略;如果设置值为 compact,表示所有数据启用压缩策略。 |
num.io.threads | 默认是 8 。负责写磁盘的线程数。整个参数值要占总核数的 50%。 |
num.replica.fetchers | 副本拉取线程数,这个参数占总核数的 50%的 1/3 |
num.network.threads | 默认是 3 。数据传输线程数,这个参数占总核数的50%的 2/3 。 |
log.flush.interval.messages | 强制页缓存刷写到磁盘的条数,默认是 long 的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。 |
log.flush.interval.ms | 每隔多久,刷数据到磁盘,默认是 null。一般不建议修改,交给系统自己管理。 |
节点服役与退役
服役新节点
- 克隆一个kafka节点服务器,修改 IP 地址和主机名称
- 修改配置文件,broker.id为 3
- 删除克隆的节点上的 data 和 logs 文件
- 启动 kafka 的3节点集群
- 单独启动新节点 kafka
bin/kafka-server-start.sh -daemon ./config/server.properties
- 执行负载均衡操作 创建一个要均衡的主题(这里以 third 主题为例)
vi topics-to-move.json
{
“topics”: [
{“topic”: “third”}
],
“version”: 1
} - 生成负载均衡计划
bin/kafka-reassign-partitions.sh
--bootstrap-server node1:9092 --topics-to-move-json-file
topics-to-move.json--broker-list "0,1,2,3"
--generate
创建副本存储计划(所有副本存储在broker0、broker1、broker2、broker3)
vi increase-replication-factor.json
复制这些内容
执行副本存储计划
bin/kafka-reassign-partitions.sh
--bootstrap-server node1:9092--reassignment-json-file
increase-replication-factor.json--execute
验证副本存储计划
bin/kafka-reassign-partitions.sh
--bootstrap-server hadoop102:9092 --reassignment-json-file increase-replication-factor.json--verify
退役旧结点
执行负载均衡操作
先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡
- 创建一个要均衡的主题
vi topics-to-move.json
{ "topics": [ {"topic": "third"} ], "version": 1 }
- 创建执行计划
bin/kafka-reassign-partitions.sh
--bootstrap-server node1:9092 --topics-to-move-json-file topics-to-move.json--broker-list "0,1,2"
--generate
- 创建副本存储计划(所有副本存储在broker0、broker1、broker2、broker3)
vi increase-replication-factor.json
- 执行副本计划
bin/kafka-reassign-partitions.sh
--bootstrap-server node1:9092--reassignment-json-file
increase-replication-factor.json--execute
- 验证副本存储计划
bin/kafka-reassign-partitions.sh
--bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json--verify
- 最后关闭 kafka 即可下线
bin/kafka-server-stop.sh
kafka 副本
副本基本信息
Kafka 副本作用:
提高数据的可靠性
Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据的可靠性;副本太多会增加磁盘的存储空间,增加网络上数据传输,将抵效率。
Kafka中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发送给 Leader,然后 Follower 进行数据同步
Kafka 分区中所有副本统称为 AR
AR = OSR + ISR
ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。
OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本。
Leader 选举流程
Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群broker 的上下线
,所有 topic 的分区副本分配
和 Leader 选举
等工作。
Controller 的信息同步工作是依赖于 Zookeeper 的。
Leader 和 Follower 故障处理细节
LEO (Log End Offset):
每个副本的最后一个offset,LEO就是最新的offset + 1
HW (High Watermark):
左右副本中最小的 LEO
分区副本分配
如果 kafka 服务器有 4 个节点,那么设置 kafka 的分区数大于服务器台数,在kafka 底层如何分配存储副本呢?
1)创建 16 分区, 3 个副本
(1)创建一个新的 topic ,名称为 second
bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 16 --replication-factor 3 --topic second
(2)查看分区和副本情况
bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic second
分区副本分配
手动调整分区副本存储
在生产环境中,每台服务器的配置和性能不一致,但是 Kafka 只会根据自己的代码规则创建对应的分区副本,就会导致个别服务器存储压力比较大。所以需要手动调整分区副本的存储。
需求:
创建一个新的 topic,4 个分区,两个副本,名称为 three,将该 topic 的所有副本存储到 broker0 和 broker1 两台服务器上。
手动调整分区副本存储的步骤如下:
(1) 创建一个新的 topic ,名称为 three
bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 4 --replication-factor 2 --topic three
(2) 查看分区副本存储情况
bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic three
(3) 创建副本执行计划(所有副本都指定在 broker0,broker1中)
vi increase-replication-factor.json
{
“version”:1,
“partitions”:[{“topic”:“three”,“partition”:0,“replicas”:[0,1]},
{“topic”:“three”,“partition”:1,“replicas”:[0,1]},
{“topic”:“three”,“partition”:2,“replicas”:[1,0]},
{“topic”:“three”,“partition”:3,“replicas”:[1,0]}]
}
(4) 执行副本存储计划
bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute
(5) 验证副本存储计划
bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --verify
(6) 查看分区副本存储情况
bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic three
Leader Partition 负载均衡
正常情况下,Kafka本身会自动把 Leader Partition 均匀分散在各个机器上
,来保证每台机器的读写吞吐量都是均匀的,但是如果某些 broker 宕机了,会导致 Leader Partition 过于集中在其他少部分几台 broker上
,就会导致少数几台broker的读写请求压力过高,其他宕机的 broker 重启之后都是 Follower Partition,读写请求很低,造成集群负载不均衡
。
假设集群中只有一个主题如下图所示:
针对 broker0 节点,分区 2 的AR优先副本是 0 节点,但是 0 节点却不是Leader节点,所以不平衡数加1,AR副本总数是4,所以broker0节点的不平衡率为 1/4 > 10%,所以需要再平衡。
broker2和broker3节点和broker0不平衡率一样,需要再平衡。broker1的不平衡数为0,不需要再平衡。
参数名称 | 描述 |
---|---|
auto.leader.rebalance.enable | 默认是 true 。 自动 Leader Partition 平衡。生产环境中,leader 重选举的代价比较大,可能会带来性能影响,建议设置为 false 关闭。 |
leader.imbalance.per.broker.percentage | 默认是 10% 。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。 |
leader.imbalance.check.interval.seconds | 默认值 300 秒 。检查 leader 负载是否平衡的间隔时间。 |
增加副本因子
在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的增加需要先制定计划,然后根据计划执行。
(1) 创建 topic
bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 3 --replication-factor 1 --topic four
(2) 手动增加副本存储
(1) 创建副本存储计划(所有副本都指定存储在broker0,broker1,broker2中)
vi increase-replication-factor.json
{“version”:1,“partitions”:[
{“topic”:“four”,“partition”:0,“replicas”:[0,1,2]},
{“topic”:“four”,“partition”:1,“replicas”:[0,1,2]},
{“topic”:“four”,“partition”:2,“replicas”:[0,1,2]}
]
}
(2) 执行副本存储计划
bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute
文件存储
文件存储机制
Topic 数据的存储机制
Kafka 文件存储机制
Topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件
,该log文件中存储的就是Producer生产的数据。Producer生产的数据会被不断追加到该log文件末端
,为防止log文件过大导致数据定位效率低下,Kafka采取了分片
和索引
机制,将每个partition分为多个segment
。每个segment包括
:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。
Topic 数据到底存储在什么位置?
(1) 启动生产者,并发送消息
bin/kafka-console-producer.sh --bootstrap-server node1:9092 --topic four
(2) 查看 node1 的 /opt/software/kafka/kafka_2.12-2.8.0/data/four-0
文件
(3) 直接查看 log 日志,发现是乱码
(4) 通过工具查看 index 和 log 信息
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log --print-data-log
Log 文件和 Index 文件详解
说明:
参数 | 描述 |
---|---|
log.segment.bytes | Kafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分成块的大小,默认值 1G 。 |
log.index.interval.bytes | 默认 4kb ,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 稀疏索引。 |
文件清理策略
Kafka 中默认的日志保存时间为 7 天
,可以通过调整如下参数修改保存时间。
⚫ log.retention.hours,最低优先级小时,默认 7 天。
⚫ log.retention.minutes,分钟。
⚫ log.retention.ms,最高优先级毫秒。
⚫ log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。
那么日志一旦超过了设置的时间,怎么处理呢?
Kafka 中提供的日志清理策略有 delete
和 compact
两种。
1)delete 日志删除:将过期数据删除
⚫ log.cleanup.policy = delete 所有数据启用删除策略
(1)基于时间:默认打开
。以 segment 中所有记录中的最大时间戳作为该文件时间戳。
(2)基于大小:默认关闭
。超过设置的所有日志总大小,删除最早的segment。
log.retention.bytes,默认等于-1,表示无穷大。
思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?
2)compact 日志压缩
compact日志压缩:对于相同key的不同value值,只保留最后一个版本。
⚫ log.cleanup.policy = compact 所有数据启用压缩策略
压缩后的offset可能是不连续的,比如上图中没有6,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,实际上会拿到offset为7的消息,并从这个位置开始消费。
这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。