kafka broker

kafka broker 工作流程

zookeeper存储的 kafka 信息

在 zookeeper 的服务端存储 kafka 相关信息

  • /kafka/brokers/ids [0,1,2] 记录有哪些服务器
  • /kafka/brokers/topics/first/partitions/0/state {"leader":1,"isr":[0,1,2]} 记录谁是leader,有哪些服务可用
  • /kafka/controller {"brokerid": 0} 辅助选举leader

在这里插入图片描述

kafka broker 总体工作流程

在这里插入图片描述
1)模拟 Kafka 上下线,观察 Zookeeper 中数据变化

kafka 的三个节点已经启动

查看 /brokers/ids 路径上的节点
在这里插入图片描述


查看 /controller
在这里插入图片描述


查看 /brokers/topics/third/partitions/0/state 路径上的数据
在这里插入图片描述


停掉某一个节点的kafka,再次查看
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


重新启动再次查看

broker 重要参数
参数名称描述
replica.lag.time.max.msISR 中,如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值,默认 30s
auto.leader.rebalance.enable默认是 true。 自动 Leader Partition 平衡。leader.imbalance.per.broker.percentage 默认是10%。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。
leader.imbalance.check.interval.seconds默认值 300 秒。检查 leader 负载是否平衡的间隔时间。
log.segment.bytesKafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分 成块的大小,默认值 1G
log.index.interval.bytes默认 4kb,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。
log.retention.hoursKafka 中数据保存的时间,默认 7 天
log.retention.minutesKafka 中数据保存的时间,分钟级别,默认关闭。
log.retention.msKafka 中数据保存的时间,毫秒级别,默认关闭。
log.retention.check.interval.ms检查数据是否保存超时的间隔,默认是 5 分钟
log.retention.bytes默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的 segment。
log.cleanup.policy默认是 delete,表示所有数据启用删除策略;如果设置值为 compact,表示所有数据启用压缩策略。
num.io.threads 默认是 8。负责写磁盘的线程数。整个参数值要占总核数的 50%。
num.replica.fetchers副本拉取线程数,这个参数占总核数的 50%的 1/3
num.network.threads默认是 3。数据传输线程数,这个参数占总核数的50%的 2/3 。
log.flush.interval.messages强制页缓存刷写到磁盘的条数,默认是 long 的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。
log.flush.interval.ms每隔多久,刷数据到磁盘,默认是 null。一般不建议修改,交给系统自己管理。
节点服役与退役
服役新节点
  • 克隆一个kafka节点服务器,修改 IP 地址和主机名称
  • 修改配置文件,broker.id为 3
  • 删除克隆的节点上的 data 和 logs 文件
  • 启动 kafka 的3节点集群
  • 单独启动新节点 kafka bin/kafka-server-start.sh -daemon ./config/server.properties
  • 执行负载均衡操作 创建一个要均衡的主题(这里以 third 主题为例)
    vi topics-to-move.json

    {
    “topics”: [
    {“topic”: “third”}
    ],
    “version”: 1
    }

  • 生成负载均衡计划

    bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --topics-to-move-json-file
    topics-to-move.json --broker-list "0,1,2,3" --generate
    在这里插入图片描述


    创建副本存储计划(所有副本存储在broker0、broker1、broker2、broker3)
    vi increase-replication-factor.json
    复制这些内容
    在这里插入图片描述


    执行副本存储计划
    bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute
    在这里插入图片描述


    验证副本存储计划
    bin/kafka-reassign-partitions.sh --bootstrap-server hadoop102:9092 --reassignment-json-file increase-replication-factor.json --verify
    在这里插入图片描述

退役旧结点

执行负载均衡操作


先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡


  • 创建一个要均衡的主题
vi topics-to-move.json
{
"topics": [
{"topic": "third"}
],
"version": 1
}
  • 创建执行计划
    bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2" --generate
    在这里插入图片描述

  • 创建副本存储计划(所有副本存储在broker0、broker1、broker2、broker3)
    vi increase-replication-factor.json
    在这里插入图片描述

  • 执行副本计划
    bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute
    在这里插入图片描述

  • 验证副本存储计划
    bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --verify
    在这里插入图片描述

  • 最后关闭 kafka 即可下线
    bin/kafka-server-stop.sh
kafka 副本
副本基本信息

Kafka 副本作用:提高数据的可靠性
Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据的可靠性;副本太多会增加磁盘的存储空间,增加网络上数据传输,将抵效率。
Kafka中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发送给 Leader,然后 Follower 进行数据同步
Kafka 分区中所有副本统称为 AR
AR = OSR + ISR
ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。
OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本。

Leader 选举流程

Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群broker 的上下线,所有 topic 的分区副本分配 Leader 选举等工作。

Controller 的信息同步工作是依赖于 Zookeeper 的。
在这里插入图片描述

Leader 和 Follower 故障处理细节

LEO (Log End Offset):每个副本的最后一个offset,LEO就是最新的offset + 1
HW (High Watermark):左右副本中最小的 LEO

在这里插入图片描述

在这里插入图片描述

分区副本分配

如果 kafka 服务器有 4 个节点,那么设置 kafka 的分区数大于服务器台数,在kafka 底层如何分配存储副本呢?


1)创建 16 分区, 3 个副本

(1)创建一个新的 topic ,名称为 second

bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 16 --replication-factor 3 --topic second


(2)查看分区和副本情况

bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic second
在这里插入图片描述

分区副本分配
在这里插入图片描述

手动调整分区副本存储

在生产环境中,每台服务器的配置和性能不一致,但是 Kafka 只会根据自己的代码规则创建对应的分区副本,就会导致个别服务器存储压力比较大。所以需要手动调整分区副本的存储。

需求:创建一个新的 topic,4 个分区,两个副本,名称为 three,将该 topic 的所有副本存储到 broker0 和 broker1 两台服务器上。

在这里插入图片描述

手动调整分区副本存储的步骤如下:

(1) 创建一个新的 topic ,名称为 three


bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 4 --replication-factor 2 --topic three


(2) 查看分区副本存储情况


bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic three


在这里插入图片描述


(3) 创建副本执行计划(所有副本都指定在 broker0,broker1中)


vi increase-replication-factor.json

{
“version”:1,
“partitions”:[{“topic”:“three”,“partition”:0,“replicas”:[0,1]},
{“topic”:“three”,“partition”:1,“replicas”:[0,1]},
{“topic”:“three”,“partition”:2,“replicas”:[1,0]},
{“topic”:“three”,“partition”:3,“replicas”:[1,0]}]
}


(4) 执行副本存储计划


bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute


(5) 验证副本存储计划


bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --verify


(6) 查看分区副本存储情况


bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic three


在这里插入图片描述

Leader Partition 负载均衡

正常情况下,Kafka本身会自动把 Leader Partition 均匀分散在各个机器上,来保证每台机器的读写吞吐量都是均匀的,但是如果某些 broker 宕机了,会导致 Leader Partition 过于集中在其他少部分几台 broker上,就会导致少数几台broker的读写请求压力过高,其他宕机的 broker 重启之后都是 Follower Partition,读写请求很低,造成集群负载不均衡

在这里插入图片描述
假设集群中只有一个主题如下图所示:
在这里插入图片描述
针对 broker0 节点,分区 2 的AR优先副本是 0 节点,但是 0 节点却不是Leader节点,所以不平衡数加1,AR副本总数是4,所以broker0节点的不平衡率为 1/4 > 10%,所以需要再平衡。
broker2和broker3节点和broker0不平衡率一样,需要再平衡。broker1的不平衡数为0,不需要再平衡。

参数名称描述
auto.leader.rebalance.enable默认是 true。 自动 Leader Partition 平衡。生产环境中,leader 重选举的代价比较大,可能会带来性能影响,建议设置为 false 关闭。
leader.imbalance.per.broker.percentage默认是 10%。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。
leader.imbalance.check.interval.seconds默认值 300 秒。检查 leader 负载是否平衡的间隔时间。
增加副本因子

在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的增加需要先制定计划,然后根据计划执行。

(1) 创建 topic


bin/kafka-topics.sh --bootstrap-server node1:9092 --create --partitions 3 --replication-factor 1 --topic four


(2) 手动增加副本存储

(1) 创建副本存储计划(所有副本都指定存储在broker0,broker1,broker2中)


vi increase-replication-factor.json


{“version”:1,“partitions”:[
{“topic”:“four”,“partition”:0,“replicas”:[0,1,2]},
{“topic”:“four”,“partition”:1,“replicas”:[0,1,2]},
{“topic”:“four”,“partition”:2,“replicas”:[0,1,2]}
]
}


(2) 执行副本存储计划


bin/kafka-reassign-partitions.sh --bootstrap-server node1:9092 --reassignment-json-file increase-replication-factor.json --execute

在这里插入图片描述

文件存储
文件存储机制
Topic 数据的存储机制

Kafka 文件存储机制

Topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是Producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,为防止log文件过大导致数据定位效率低下,Kafka采取了分片索引机制,将每个partition分为多个segment每个segment包括:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。

在这里插入图片描述

Topic 数据到底存储在什么位置?

(1) 启动生产者,并发送消息

bin/kafka-console-producer.sh --bootstrap-server node1:9092 --topic four

(2) 查看 node1 的 /opt/software/kafka/kafka_2.12-2.8.0/data/four-0 文件

在这里插入图片描述

(3) 直接查看 log 日志,发现是乱码

在这里插入图片描述

(4) 通过工具查看 index 和 log 信息

kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log

在这里插入图片描述

kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log --print-data-log

在这里插入图片描述

Log 文件和 Index 文件详解

在这里插入图片描述
说明:

参数描述
log.segment.bytesKafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分成块的大小,默认值 1G
log.index.interval.bytes默认 4kb,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 稀疏索引。
文件清理策略

Kafka 中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。

⚫ log.retention.hours,最低优先级小时,默认 7 天。
⚫ log.retention.minutes,分钟。
⚫ log.retention.ms,最高优先级毫秒。
⚫ log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。

那么日志一旦超过了设置的时间,怎么处理呢?

Kafka 中提供的日志清理策略有 deletecompact 两种。

1)delete 日志删除:将过期数据删除

⚫ log.cleanup.policy = delete 所有数据启用删除策略

(1)基于时间:默认打开。以 segment 中所有记录中的最大时间戳作为该文件时间戳。
(2)基于大小:默认关闭。超过设置的所有日志总大小,删除最早的segment。
log.retention.bytes,默认等于-1,表示无穷大。

思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?
在这里插入图片描述

2)compact 日志压缩

compact日志压缩:对于相同key的不同value值,只保留最后一个版本。

⚫ log.cleanup.policy = compact 所有数据启用压缩策略

在这里插入图片描述

压缩后的offset可能是不连续的,比如上图中没有6,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,实际上会拿到offset为7的消息,并从这个位置开始消费。

这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_子栖_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值