卷积神经网络CNN中1×1卷积作用理解

1x1卷积在GoogLeNet和VGG等网络中用于增加网络深度,引入非线性,同时能进行升维或降维。1x1卷积在不改变感受野的情况下增加网络层次,提升模型表达能力。此外,1x1卷积能有效减少网络参数,降低计算复杂度,例如在ResNet和VGG中,通过1x1卷积实现通道数的调整,大幅减少了参数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.引言

研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,在最开始看到的AlexNet中都是出现了卷积核是 3x3和5×5的。那么,1x1 的卷积核有什么意义呢?

最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了。

他们在论文中解释,大概有下面 2 个意义。

1、增加网络的深度,添加非线性

其一:

这个就比较好理解了,1x1 的卷积核虽小,但也是卷积核,加 1 层卷积,网络深度自然会增加。

其实问题往下挖掘,应该是增加网络深度有什么好处?为什么非要用 1x1 来增加深度呢?其它的不可以吗?

其实,这涉及到感受野的问题,我们知道卷积核越大,它生成的 featuremap 上单个节点的感受野就越大,随着网络深度的增加,越靠后的 featuremap 上的节点感受野也越大。因此特征也越来越形象,也就是更能看清这个特征是个什么东西。层数越浅,就越不知道这个提取的特征到底是个什么东西。

解释:

好比以上这个图,当层数越浅时,我们只能看到low level parts 也就是一些细节的纹理,并不知道这个纹理是来自于车轮,车身,还是其他哪里。但是随着网络层数的加深,感受野增大,到了mid level parts时,就可以看到车的一部分零件了,比如看到了车轮,车窗,但是看不完。到了层数很深后,就是high level parts了,可以看到这个物品是个完整的车子,或者是其他一个什么东西。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值