GBDT算法

公式推导没太懂…直接移步大佬博客吧
梯度提升树(GBDT)原理小结
https://www.cnblogs.com/pinard/p/6140514.html

挑一些重要的记下来

1. GBDT概述

GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。

GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是 ft1(x) f t − 1 ( x ) , 损失函数是 L(y,ft1(x)) L ( y , f t − 1 ( x ) ) ,我们本轮迭代的目标是找到一个CART回归树模型的弱学习器 ht(x) h t ( x ) ,让本轮的损失 L(y,ft(x)=L(y,ft1(x)+ht(x)) L ( y , f t ( x ) = L ( y , f t − 1 ( x ) + h t ( x ) ) 最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。

GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

从上面的例子看这个思想还是蛮简单的,但是有个问题是这个损失的拟合不好度量,损失函数各种各样,怎么找到一种通用的拟合方法呢?

2. GBDT的负梯度拟合

有了GBDT的基本思路后,如何解决损失函数拟合方法的问题?针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。

3. GBDT回归算法

4. GBDT分类算法

这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

为了解决这个问题,主要有两个方法:

  1. 指数损失函数,此时GBDT退化为Adaboost算法。
  2. 类似于逻辑回归对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。
    而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

4.1 二元GBDT分类算法

4.2 多元GBDT分类算法

5. GBDT常用损失函数

(1)分类算法

对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:

  1. 如果是指数损失函数,则损失函数表达式为
    L(y,f(x))=exp(yf(x)) L ( y , f ( x ) ) = e x p ( − y f ( x ) )
    其负梯度计算和叶子节点的最佳残差拟合参见Adaboost原理篇。
  2. 如果是对数损失函数,分为二元分类和多元分类两种

(2)回归算法

常用损失函数有如下4种:

  1. 均方差,这个是最常见的回归损失函数了
    L(y,f(x))=(yf(x))2 L ( y , f ( x ) ) = ( y − f ( x ) ) 2
  2. 绝对损失,这个损失函数也很常见
    L(y,f(x))=|yf(x)| L ( y , f ( x ) ) = | y − f ( x ) |
     对应负梯度误差为:
    sign(yif(xi)) s i g n ( y i − f ( x i ) )
  3. Huber损失,它是均方差和绝对损失的折衷产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:
    L(y,f(x))={12(yf(x))2δ(|yf(x)|δ2)|yf(x)|δ|yf(x)|>δ L ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 | y − f ( x ) | ≤ δ δ ( | y − f ( x ) | − δ 2 ) | y − f ( x ) | > δ
    对应的负梯度误差为:
    r(yi,f(xi))={yif(xi)δsign(yif(xi))|yif(xi)|δ|yif(xi)|>δ r ( y i , f ( x i ) ) = { y i − f ( x i ) | y i − f ( x i ) | ≤ δ δ s i g n ( y i − f ( x i ) ) | y i − f ( x i ) | > δ
  4. 分位数损失。它对应的是分位数回归的损失函数,表达式为
    L(y,f(x))=yf(x)θ|yf(x)|+y<f(x)(1θ)|yf(x)| L ( y , f ( x ) ) = ∑ y ≥ f ( x ) θ | y − f ( x ) | + ∑ y < f ( x ) ( 1 − θ ) | y − f ( x ) |
    其中 θ θ 为分位数,需要我们在回归前指定。对应的负梯度误差为:
    r(yi,f(xi))={θθ1yif(xi)yi<f(xi) r ( y i , f ( x i ) ) = { θ y i ≥ f ( x i ) θ − 1 y i < f ( x i )

对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

6. GBDT的正则化

和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。

  1. 第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为 ν ν ,对于前面的弱学习器的迭代
    fk(x)=fk1(x)+hk(x) f k ( x ) = f k − 1 ( x ) + h k ( x )
    如果我们加上了正则化项,则有
    fk(x)=fk1(x)+νhk(x) f k ( x ) = f k − 1 ( x ) + ν h k ( x )
    ν ν 的取值范围为 0<ν1 0 < ν ≤ 1 。对于同样的训练集学习效果,较小的 ν ν 意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。
  2. 第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。

       使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。

  3. 第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。

7. GBDT小结

目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。

最后总结下GBDT的优缺点。

GBDT主要的优点有:

  1. 可以灵活处理各种类型的数据,包括连续值和离散值。
  2. 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。
  3. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

GBDT的主要缺点有:

  1. 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值