GBDT算法解读

本文参考:GBDT算法原理以及实例理解_Freeman_zxp的博客-CSDN博客_gbdt

1、GBDT构建树的树类型,最佳划分点策略

GBDT使用的决策树是CART回归树。不使用分类树的原因是,GBDT每次迭代拟合的是梯度值,它是连续值所以要用回归树。

2、提升树(Boosting Tree)算法过程

3、梯度提升树与提升树的区别,并公式推导原因

使用损失函数的负梯度作为提升树算法中残差的近似值。

因为当损失函数是平方损失时,每一步优化较简单。但是对于一般损失函数,则每一步优化不那么容易,所以提出了损失函数负梯度近似替代残差的方法。

推导如下:

f(x)在xk-1的一阶泰勒展开如下:

将xk代入可得:

f(x)转换为损失函数:

fk(x)代入可得:

提升树中:

因为每一次优化我们希望损失值越来越小,所以,即:

为了保证该式子恒成立,则:

4、GBDT算法流程

5、GBDT计算流程

取loss为平方误差时,

  1. 计算c=yi的平均值,f0(x)=c
  2. 遍历yi计算与f0(x)的残差
  3. 遍历j1~j4分别作为切分点,计算残差下left与right的平方差之和,选取最小的平方差对应的切分点为划分点,取分支下样本残差的平均值作为f1(x)的输出值
  4. 遍历yi计算f0(x)+αf1(x)的残差,重复步骤(3),直到生成N棵树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值