X-VLM多模态模型解读

X-VLM是一种新的多模态预训练模型,它通过灵活的patch embeddings表示不同粒度的视觉概念,直接优化模型对不同粒度的文本和视觉概念的对齐。此外,X-VLM还能预测文本对应的视觉概念坐标,进一步增强对齐学习。在4M和16M的数据集上,X-VLM在多种多模态任务上表现出色,超过了使用更多数据或更大规模模型的现有方法。
摘要由CSDN通过智能技术生成

论文:https://arxiv.org/abs/2111.08276
代码:https://github.com/zengyan-97/X-VLM 

研究背景

现有的多模态预训练模型大致分为两类:

1)依赖目标检测器提取基于物体(例如:车、人、树、背包)的特征来表示图片,这种方法可以学习到物体级别的视觉和语言对齐,如图1中(a)所示。这些方法要么直接利用预先训练的目标检测器,要么将目标检测过程合并到多模态预训练中;

2)用 ResNet 或者 Vision Transformer 编码整张图片,只学习图片和文本之间的对齐,如图1(b)所示。

这两种方法都存在一定的问题。首先,基于目标检测的方法会识别图片中所有可能的物体,其中不乏一些与配对文本无关的。此外,这种方法所提取的基于物体的视觉特征可能会丢失物体之间的信息(可以认为是一种上下文信息)。而且,这种方法只能识别有限种类的物体,我们很难预先定义合适的物体类别。而第二种方法则比较简单直接,但是较难学习到细粒度的视觉和语言对齐,例如:物体级别的对齐。这种细粒度的对齐关系被之前的工作证实对于视觉推理 (visual reasoning) 和视觉定位 (visual grounding) 任务很有帮助。

实际上,对于多模态预训练,有以下公开数据以供模型使用:1)图片和图片标题;2)区域标注,例如:图1中的文本 “man crossing the street” 关联到了图片中的某个具体区域。然而,之前的工作却粗略地将区域标注与整张图片对齐;3)物体标签,例如 “backpack”,这些标注被之前的工作用来训练目标检测器。

与之前的做法不同,本文中作者提出X-VLM,以统一的方式利用上述数据高效地学习多粒度的视觉和语言对齐,能够避免高开销的目标检测过程,也不局限于学习图像级别或物体级别的对齐。具体来说,作者提出可以使用基于 Vision Transformer 的 patch embeddings 来灵活表示各种粒度大小的视觉概念,如图1(c)所示:例如,视觉概念 “backpack” 由2个patch组成,而视觉概念 “man crossing the street” 由更多的patch组成。

因此,X-VLM学习多粒度视觉和语言对齐的秘诀在于:

1)使用 patch embeddings 来灵活表示各种粒度的视觉概念,然后直接拉齐不同粒度的视觉概念和对应文本,这一过程使用常用的对比学习损失、匹配损失、和MLM损失优化;

2)更进一步,在同一张图片中,给出不同的文本,要求模型能预测出对应粒度的视觉概念的坐标,以边界框坐标的回归损失和交并比损失优化。实验证明,这种预训练方法十分高效,模型规模无需很大,预训练数据无需很多,X-VLM 就能在下游多种多模态理解/生成任务上获得非常优秀的表现。

方法

X-VLM 由一个图像编码器,一个文本编码器,一个跨模态编码器组成。

图2左侧给出了视觉概念 (可以是物体/区域/图片)的编码过程:该图像编码器基于Vision Transformer,将输入图片分成patch编码。然后,给出任意一个边界框,灵活地通过取框中所有patch表示的平均值获得区域的全局表示。再将该全局表示和原本框中所有的patch表示按照原本顺序整理成序列,作为该边界框所对应的视觉概念的表示。通过这样的方式获得图片本身(I)和图片中视觉概念(V1,V2,V3)的编码。与视觉概念对应的文本,则通过文本编码器一一编码获得,例如图片标题、区域描述、或物体标签。

X-VLM采用常见的模型结构,其不同之处在于预训练的方法。作者通过以下两类损失进行优化:

第一,在同一张图片中,给出不同的文本,例如:T(text)、T1(text1)、T2(text2)、T3(text3),要求模型预测图片中对应视觉概念的边界框:

 是跨模态编码器在 [CLS] 位置的输出向量。Sigmoid 函数是为了标准化预测的边界框。Ground-truth bj对应了 ,依次是标准化后的的中心横坐标、中心纵坐标、宽、高。最后,该损失是边界框坐标的回归损失(L1)和交并比损失(GIoU)之和。作者认为在同一张图片中,给不同文字,要求模型预测出对应的视觉概念,能使模型更有效地学习到多粒度的视觉语言对齐。该损失也是首次被使用在多模态预训练中。

第二,使用patch embeddings来灵活表示各种粒度的视觉概念,然后直接优化模型去拉齐不同粒度的文本和视觉概念,包括了物体/区域/图片与文本的对齐。作者使用多模态预训练中常见的三个损失优化,依次是:

1)对比学习损失:

 是ground-truth相似度, 对角线为1,其余为0。

  是模型基于文字编码器输出和图像编码器输出所计算的相似度。

   2)匹配损失:

pmatch是基于跨模态编码器计算,预测所给(视觉概念,文本)对是否匹配(换句话说,0/1分类)。对于每对正例,作者采样一对负例。

3)Masked Language Modeling损失:

 T(估计值)中的一些词已经被随机替换成了 [MASK],pj(VT(估计值))是跨模态编码器在词tj位置的输出向量所计算的词表概率分布。

最终优化loss即上述几个loss相加:

实验

作者使用多模态预训练中常见的中等规模的4M和16M图片数据集进行实验,如下表所示:

其中,标注(# Ann)是区域标注和物体标签的总和。可以看出,有些数据集没有图片标题,例如Visual Genome(VG),有些数据集没有图片标注,例如CC-3M/12M。

 表2展示了在图像文本检索任务 (MSCOCO和Flickr30K) 上的表现。即使,之前的方法在更大量的内部数据上预训练或者模型规模更大,在4M图片数据集下训练的X-VLM就已经可以超过之前的方法。

表3展示了在视觉推理 (VQA2.0和NLVR2)、视觉定位 (RefCOCO+) 、图片描述生成 (COCO Caption) 上的模型表现。为了公平的对比,X-VLM 沿用了之前工作的 fine-tune 方法,没有进行额外的调整。结合表2和表3,可以看出,相比之前的方法,X-VLM支持更多种类的下游任务,并且在这些常见的视觉语言任务上都取得了十分优秀的表现。

总结和讨论

在本文中,作者提出了X-VLM以学习多粒度的视觉和语言对齐,能够避免高开销的目标检测过程,也不局限于学习图像级别或物体级别的对齐。X-VLM 的秘诀在于:

1)基于 patch embeddings 灵活表示各种粒度的视觉概念,然后直接拉齐不同粒度的视觉概念和对应文本;

2)更进一步,在同一张图片中,给出不同的文本,要求模型能预测出对应视觉概念的坐标。实验证实这种预训练方法十分高效。

在实验部分,作者使用常用的4M和16M数据,训练总参数量216M的 X-VLM ,就能超过更大规模的模型或使用大量预训练数据的模型,在下游多种多模态理解/生成任务上取得非常优秀的表现。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值