Machine Learning
文章平均质量分 83
yj_isee
这个作者很懒,什么都没留下…
展开
-
PCA(主成成分分析)和LDA(线性判别分析)详解-共性和区别
注:这里说的LDA实际上讲的是Fisher’s linear discriminant analysis在machine learning领域,PCA和LDA都可以看成是数据降维的一种方式。但是PCA是unsupervised,也就是说不需要知道sample对应的label,但是LDA是supervised,需要知道每一个数据点对应的label。下面分别解释PCA和LDA的基本原理1.PCAPCA被原创 2017-04-30 20:48:03 · 26108 阅读 · 1 评论 -
two-class SVM & one-class SVM & exemplar SVM区别简析
1.首先从典型的svm讲起,假设我们用A,B两个类的数据,我们需要训练一个分类器来区分这两类数据,那么我们可以通过训练一个two-class SVM,找到A,B之间的分割超平面。2.如果我现在只有A的数据,并且我只想识别某个instance是不是A,应该怎么办呢?一般的想法是,我有的A的数据之后,我去搜集一些不是A类别的数据,然后训练一个two-class SVM。但这么做的问题在于,非A的data原创 2017-04-30 15:18:36 · 3872 阅读 · 0 评论 -
PRML学习笔记-《Introduction》
Introduction1.1 Example of Curve Fitting1.常见术语的定义:1.generalization: The ability to categorize correctly new examples that differ from those used for training is called generalization; 2.classification原创 2018-01-04 16:37:37 · 1034 阅读 · 0 评论 -
PRML学习笔记-《Probability Distribution》
Probability Distribution0.introduction1.density estimation:给定随机变量xx的一些观察值{x1,x2,...,xN}\{x_1, x_2, ... , x_N\},估计变量xx的概率分布p(x)p(x)。在这一章当中,我们假设所有的观测值满足独立同分布iid2.对于density estimation问题,常见的频率学派的做法是原创 2018-01-06 21:47:08 · 568 阅读 · 0 评论