two-class SVM & one-class SVM & exemplar SVM区别简析

本文介绍了two-class SVM、one-class SVM以及exemplar SVM的区别。two-class SVM寻找两类数据间的分割超平面;one-class SVM仅用一类数据找包含所有实例的最小球体;exemplar SVM作为two-class SVM的子单元,每个实例对应一个SVM,可并行训练。训练数据、机器数量及后期处理是它们的主要差异。
摘要由CSDN通过智能技术生成

1.首先从典型的svm讲起,假设我们用A,B两个类的数据,我们需要训练一个分类器来区分这两类数据,那么我们可以通过训练一个two-class SVM,找到A,B之间的分割超平面。

2.如果我现在只有A的数据,并且我只想识别某个instance是不是A,应该怎么办呢?一般的想法是,我有的A的数据之后,我去搜集一些不是A类别的数据,然后训练一个two-class SVM。但这么做的问题在于,非A的dataset很大,并且不是representative的。这样训练出来的SVM效果可能不好。one-class SVM其实就是找到一个最小的sphere包括所有的A的instance。

3.exemplar SVM其实是two-class SVM的subunit,这里正样本只有一个,但是负样本有很多。比如我们需要训练一个狗的分类器,我们可以训练一个two-class SVM(dog vs not dog),我们可以训练一个one-class SVM(dog vs origin),我们也可以对于每一只具体的狗的instance,训练一个exemplar SVM。然后把所有的exemplar SVM ensemble起来,每一个exemplar SVM的训练是可以并行进行的,他们训练的时候也可以看成是在训练一个one-class svm。

总结一下,区别在于:
training data
1. two-class svm: positive samples and negative samples
2. one-class svm: positive samples only
3. ensemble svm: positive and negative samples. each

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值