BMVC 2017 oral
code: https://drive.google.com/drive/folders/0By2w_A-aM8Rzbllnc3JCQjhHYnM
1.Motivation
作者这篇文章的主要目的是为了提高semantic segmentation的网络对于confusion area的预测能力。所谓的confusion area,指的是最终预测的score map上熵值比较大的区域,在这些区域,网络对某些类别的预测概率都差不多大,比如对于图中猫和狗重合部分的区域就容易出现confusion
作者对FCN的预测过程进行了分析来验证自己的观点
下面这行表示FCN的,包括前面的提取特征的网络以及后面用来预测的网络。右下角表示最终预测的结果,圆形区域内部就是猫狗重合部分的区域,也就是confusion area。
一方面,从最终预测的score map上,我们可以看到狗和猫对应的score map在圆形区域的激活值都比较大,
另一方面,从前面的特征图上,我们可以统计Conv5的各个卷积核对猫和狗的归一化的激活值,可以看到,除了只对猫和只对狗激活值比较大的filter之外,还有一些对猫和狗的激活值都很大的filter,这些filter对之后的预测是没有帮助的。
作者的观点