论文阅读-《Semantic Segmentation with Reverse Attention》

本文详细介绍了《Semantic Segmentation with Reverse Attention》这篇论文,该论文提出了一种名为反向注意力网络(RAN)的新方法,旨在提升语义分割网络在混淆区域的预测能力。通过分析FCN的预测过程,作者发现针对混淆区域的反向学习过程可以提高分类准确性。RAN包含原始分支、反向分支和反向注意力分支,其中反向注意力分支通过注意力机制将反向预测结果引入到混淆区域,从而改进预测效果。实验结果显示,RAN在多个数据集上提高了语义分割的连续性和均匀性。
摘要由CSDN通过智能技术生成

BMVC 2017 oral
code: https://drive.google.com/drive/folders/0By2w_A-aM8Rzbllnc3JCQjhHYnM

1.Motivation

作者这篇文章的主要目的是为了提高semantic segmentation的网络对于confusion area的预测能力。所谓的confusion area,指的是最终预测的score map上熵值比较大的区域,在这些区域,网络对某些类别的预测概率都差不多大,比如对于图中猫和狗重合部分的区域就容易出现confusion

作者对FCN的预测过程进行了分析来验证自己的观点
r1
下面这行表示FCN的,包括前面的提取特征的网络以及后面用来预测的网络。右下角表示最终预测的结果,圆形区域内部就是猫狗重合部分的区域,也就是confusion area。

一方面,从最终预测的score map上,我们可以看到狗和猫对应的score map在圆形区域的激活值都比较大,

另一方面,从前面的特征图上,我们可以统计Conv5的各个卷积核对猫和狗的归一化的激活值,可以看到,除了只对猫和只对狗激活值比较大的filter之外,还有一些对猫和狗的激活值都很大的filter,这些filter对之后的预测是没有帮助的。

作者的观点

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值