【高数学习笔记】1.函数、极限、连续


一、数列极限和函数极限的联系和区别

  • 联系
    • 数列是一种特殊的函数,特殊体现在其定义域是n∈N+
  • 区别
    • 函数中有趋于某一个x->a,左极限,右极限三种相比于数列而言新的概念,原因是数列的自变量是离散的,比如在某个定点a=2附近是没有定义的(如n=1.999),又因为左极限和右极限的概念就是在趋于某个数的极限的基础上定义的,所以数列也没有左右极限的概念,数列唯一的极限就是趋于正无穷

二、极限的复合传递

  • 极限在复合传递时一定要注意方向性,例如对于1/x
    • 若 x → + ∞ ,则 1 x → 0 + 若x\to+∞,则\frac{1}{x}\to0^+ x+,则x10+
    • 若 x → − ∞ ,则 1 x → 0 − 若x\to-∞,则\frac{1}{x}\to0^- x,则x10
    • 若 x → 0 − ,则 1 x → − ∞ 若x\to0-,则\frac{1}{x}\to-∞ x0,则x1
    • 若 x → 0 + ,则 1 x → + ∞ 若x\to0+,则\frac{1}{x}\to+∞ x0+,则x1+
  • 常见的坑是函数该点的左右极限无区别,但是函数该点的左右极限有区别包括但不仅限于e^∞型极限和arctan∞型极限)
  • 关于左右极限的求值明确如下一点: lim ⁡ x → a − f ( x ) = lim ⁡ x → a f n e g a ( x ) \lim_{x \to a^{-}}f(x)=\lim_{x\to a}fnega(x) xalimf(x)=xalimfnega(x)其中fnega(x)表示当x<a时的f(x)表达式,这一条的意义在于:把单侧极限的求法落实到了基础而又熟悉的普通极限求法,而且单侧极限似乎只能用这种思路求,因为这是由单侧极限本身的定义所决定的

三、无穷大和无穷小性质对比

无穷大

  • 有限个无穷小的和仍是无穷小
  • 有限个无穷小的积仍是无穷小
  • 无穷小量与有界量的积仍是无穷小

无穷大

  • 两个无穷大的积仍为无穷大
  • 无穷大与有界量之和仍为无穷大
  • 无穷大与非零常数乘积仍为无穷大

四、减法的重要变形思想(重中之重)

任何一个减法都可以利用平方差公式进行两个方向的变形,下面以a-b为例说明:

  • 升阶变形: a − b = ( a − b ) ( a + b ) a + b = a 2 − b 2 a + b a-b=\frac{(a-b)(a+b)}{a+b}=\frac{a^2-b^2}{a+b} ab=a+b(ab)(a+b)=a+ba2b2
  • 降阶变形: a − b = ( a + b ) ( a − b ) a-b=(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b}) ab=(a +b )(a b )

五、f(x)±g(x)(比如x-sinx)型怎么处理

f(x)+g(x)

  • 若f(x)和g(x)是负等价无穷小(自己起的名),则不能替换,既不可以只换一个,也不可以两个都换,换一下值就变了,只能洛必达,洛出不等价以后再做处理(也有可能直接洛出结果)

f(x)-g(x)

  • 若f(x)和g(x)是等价无穷小(自己起的名),则不能替换,既不可以只换一个,也不可以两个都换,换一下值就变了,只能洛必达,洛出不等价以后再做处理(也有可能直接洛出结果)

如果f(x)和g(x)不是等价无穷小,则可以随便替换(此条有待考证)

一些特殊的结论

以下结论可以在选择题和填空题里直接用,若要在大题中使用,则要用洛必达
当x->0时

  • x − s i n x          1 6 x 3 x-sinx~~~~~~~~\frac{1}{6}x^3 xsinx        61x3
  • t a n x − x          1 3 x 3 tanx-x~~~~~~~~\frac{1}{3}x^3 tanxx        31x3
  • x − l n ( 1 + x )          1 2 x 2 x-ln(1+x)~~~~~~~~\frac{1}{2}x^2 xln(1+x)        21x2
  • a r c s i n x − x          1 6 x 3 arcsinx-x~~~~~~~~\frac{1}{6}x^3 arcsinxx        61x3
  • x − a r c t a n x          1 3 x 3 x-arctanx~~~~~~~~\frac{1}{3}x^3 xarctanx        31x3
  • 1 + x − 1 − x          x \sqrt{1+x}-\sqrt{1-x}~~~~~~~~x 1+x 1x         x

六、三角函数相关基础知识补充

一些特殊三角函数的意义

  • a r c s i n x , a r c c o s x , a r c t a n x 分别是 s i n x , c o s x , t a n x 的反函数 arcsinx,arccosx,arctanx分别是sinx,cosx,tanx的反函数 arcsinx,arccosx,arctanx分别是sinx,cosx,tanx的反函数
  • c s c x = 1 s i n x , s e c x = 1 c o s x , c o t x = 1 t a n x cscx=\frac{1}{sinx},secx=\frac{1}{cosx},cotx=\frac{1}{tanx} cscx=sinx1,secx=cosx1,cotx=tanx1

导数

  • ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
  • ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x
  • ( s e c x ) ′ = s e c x ⋅ t a n x (secx)'=secx·tanx (secx)=secxtanx
  • ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx·cotx (cscx)=cscxcotx
  • ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
  • ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=\frac{-1}{\sqrt{1-x^2}} (arccosx)=1x2 1
  • ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21
  • ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=\frac{-1}{1+x^2} (arccotx)=1+x21
  • ( s h x ) ′ = c h x (shx)'=chx (shx)=chx

特殊公式


七、(最重要)求极限

求极限分为函数求极限和数列求极限,数列求极限的方法对函数是通用的,但是函数求极限中用到的一些方法无法在数列求极限中使用(如洛必达法则和换元思想)

函数求极限

分为三步:1.判断是否需要分左右极限。2.代入x的值判断极限类型。3.解出最终结果

1.判断是否需要分左右极限

下面三种情况,需要区分左右极限

  • 分段函数中,x的趋近值正好是分段函数的分段点(包括x->0时,式中有|x|的情况)
  • e ∞ e^∞ e
  • a r c t a n ∞ arctan∞ arctan
    其余情况皆不需要专门区分左右极限

2.代入x的值判断极限类型

在代入x的值后,各部分的结果无非有三种:有限值A,无限值∞和波动值,也就是说整个式子的极限是许多或有限或无限的部分组合起来的,这时候可以按照下面的方法对其做出基础判断

  • ∞ + ∞ = ∞         ∞ + A = ∞         0 + ∞ = ∞        等等 ∞+∞=∞~~~~~~~∞+A=∞~~~~~~~0+∞=∞~~~~~~~等等 +=       +A=       0+=       等等
    当遇到波动值时,如x->∞下,sinx和cosx都是[-1,1]区间的有界量,对于这些有界量有如下判断方法
  • 0 ⋅ 有界量 = 0         ∞ ⋅ 有界量 = ∞ 0·有界量=0~~~~~~~∞·有界量=∞ 0有界量=0       有界量=
    但有些特定组合的极限值是无法靠代入x值直接看出来的,这也是最重要也是最常出题的情况,常见的有如下几种类型
    0 0         ∞ ∞         0 ⋅ ∞         ( 1 + 0 ) ∞         0 0         0 ∞         ∞ 0         ∞ ∞ \frac{0}{0}~~~~~~~\frac{∞}{∞}~~~~~~~0·∞~~~~~~~(1+0)^∞~~~~~~~0^0~~~~~~~0^∞~~~~~~~∞^0~~~~~~~∞^∞ 00              0       (1+0)       00       0       0       
    第三种可以变形成前两种
    后四种用e方法变成前两种
    至此,每一个还未解决的单元都已经变成了0/0或者∞/∞
  • 备注:上述公式中所有的0都指的指极限0而非真的0,那遇到真正的0应该怎么办呢?
    • 在加减法中遇到,容易处理
    • 在乘除法中遇到,把真0看作“最高阶的无穷小”来理解,或者“真0乘和除任何数(包括无穷)都为真0”,或者画图
    • 在幂指数中遇到,这时没有无穷小替换,也没有口诀,只能画图,因为总情况有限,下面总结一下结论:
      • lim ⁡ x → 0 x 0 = 1 ,因为 lim ⁡ x → 0 + x 0 = lim ⁡ x → 0 − x 0 = 1 \lim_{x\to0}x^{0}=1,因为\lim_{x\to0^+}x^{0}=\lim_{x\to0^-}x^{0}=1 x0limx0=1,因为x0+limx0=x0limx0=1
      • lim ⁡ x → 0 0 x = 不存在,因为 lim ⁡ x → 0 + 0 x = 0 但 lim ⁡ x → 0 − 0 x 不存在 \lim_{x\to0}0^{x}=不存在,因为\lim_{x\to0^+}0^{x}=0但\lim_{x\to0^-}0^{x}不存在 x0lim0x=不存在,因为x0+lim0x=0x0lim0x不存在
      • lim ⁡ x → 0 x x = 不存在,因为 lim ⁡ x → 0 + x x = 0 但 lim ⁡ x → 0 − x x 不存在 \lim_{x\to0}x^{x}=不存在,因为\lim_{x\to0^+}x^{x}=0但\lim_{x\to0^-}x^{x}不存在 x0limxx=不存在,因为x0+limxx=0x0limxx不存在
      • 0 0 不存在 0^0不存在 00不存在
    • 简单记忆如下:当右上角是x时,正向极限一定存在,总极限存不存在得看下面是谁;当右上角是真0时,看下面,如果下面也是真0,则极限不存在,如果下面是x,则极限=1

3.解出最终结果

首先要知道,既然0/0和∞/∞型的极限无法直接算出,那么如何破坏这种结构,答案就是:消去造成0或∞的因子,那么这些因子从哪里来?当然就要进行分解因式了,如果分解因式遇到了瓶颈,那么就转而使用洛必达法则。这时候又会引出一个新的关键技巧:等价无穷小替换。等价无穷小替换只有0/0型才能用,所以可以把∞/∞型的转成0/0型的(直接洛方便的话也可以直接洛),最后简述完整流程:

  • (分解因式+因子等价无穷小替换+上下相消)and 洛必达法则交替进行
  • 在此过程中任何一个步骤处,都可以以符合四则运算规则的方式对式子进行化简
    注意事项:每一次使用洛必达法则之前都要检查上下是否满足条件,绝对不可以只在开头检查一次以后就埋头一直往下洛

数列求极限

前面说过,函数求极限中用到的一些方法无法在数列求极限中使用,最重要的就是洛必达法则不能再用了,但是两个重要极限和等价无穷小替换以及其他大部分方法都可以正常使用

如果非洛不可,使用海涅定理,把问题转换成求函数极限

  • 假如现在要求 lim ⁡ n → ∞ x n ,可以这么来: 假如现在要求\lim_{n\to∞}x_n,可以这么来: 假如现在要求nlimxn,可以这么来: 先把 x n 表达式中包含 n 的子部分设为 b n ,令 lim ⁡ n → ∞ b n = b 0 ,且 b n ≠ b 0 ≠ ∞ 先把x_n表达式中包含n的子部分设为b_n,令\lim_{n\to∞}b_n=b_0,且b_n≠b_0≠∞ 先把xn表达式中包含n的子部分设为bn,令nlimbn=b0,且bn=b0= 则 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ f ( b n ) = lim ⁡ x → b 0 f ( x ) = A 则\lim_{n\to∞}x_n=\lim_{n\to∞}f(b_n)=\lim_{x\to b_0}f(x)=A nlimxn=nlimf(bn)=xb0limf(x)=A 举例: lim ⁡ n → ∞ ( 1 n ) s i n 1 n = lim ⁡ n → ∞ f ( b n = 1 n ) = lim ⁡ x → b 0 = 0 f ( x ) = lim ⁡ x → 0 x s i n x = e 0 = 1 举例:\lim_{n\to∞}(\frac{1}{n})^{sin\frac{1}{n}}=\lim_{n\to∞}f(b_n=\frac{1}{n})=\lim_{x\to b_0=0}f(x)=\lim_{x\to0}x^{sinx}=e^0=1 举例:nlim(n1)sinn1=nlimf(bn=n1)=xb0=0limf(x)=x0limxsinx=e0=1

特殊的数列极限问题

  • lim ⁡ . . . + . . . + . . . . . . ,即式中含有项数不确定的部分,使用夹逼准则 \lim\frac{...+...+...}{...},即式中含有项数不确定的部分,使用夹逼准则 lim......+...+...,即式中含有项数不确定的部分,使用夹逼准则
  • lim ⁡ . . . ∗ . . . ∗ . . . . . . ,即式中含有项数不确定的部分,可以使用夹逼准则,也可以因子相消等价无穷小替换 \lim\frac{...*...*...}{...},即式中含有项数不确定的部分,可以使用夹逼准则,也可以因子相消等价 无穷小替换 lim............,即式中含有项数不确定的部分,可以使用夹逼准则,也可以因子相消等价无穷小替换
  • lim ⁡ x n ,并给出了 x n 的递推公式,使用单调有界准则 \lim x_n,并给出了x_n的递推公式,使用单调有界准则 limxn,并给出了xn的递推公式,使用单调有界准则

备注

  • 幂指数中不可以使用等价无穷小,如 f ( x ) g ( x ) 不等价于 f 1 ( x ) g ( x ) 也不等价于 f ( x ) g 1 ( x ) 更不等价于 f 1 ( x ) g 1 ( x ) 幂指数中不可以使用等价无穷小,如f(x)^{g(x)}不等价于f_1(x)^{g(x)}也不等价于f(x)^{g_1(x)}更不等价于f_1(x)^{g_1(x)} 幂指数中不可以使用等价无穷小,如f(x)g(x)不等价于f1(x)g(x)也不等价于f(x)g1(x)更不等价于f1(x)g1(x)

八、有界性判断

数列有界性

数列收敛则有界,有界不一定收敛,不收敛不一定无界(如(-1)^n),无界一定不收敛,用集合关系表示如下
在这里插入图片描述

函数有界性

f ( x ) 在 ( a , b ) 或 [ a , b ] 内有界的充分条件是: lim ⁡ x → a − f ( x ) 和 lim ⁡ x → b + f ( x ) 同时存在且 f ( x ) 在 ( a , b ) 上连续 f(x)在(a,b)或[a,b]内有界的充分条件是:\lim_{x\to a^-}f(x)和\lim_{x\to b^+}f(x)同时存在且f(x)在(a,b)上连续 f(x)(a,b)[a,b]内有界的充分条件是:xalimf(x)xb+limf(x)同时存在且f(x)(a,b)上连续
f ( x ) 在 ( a , b ) 或 [ a , b ] 内有界的充要条件是:区间内任何一点都有极限值(两端点只要求有单侧极限) f(x)在(a,b)或[a,b]内有界的充要条件是:区间内任何一点都有极限值(两端点只要求有单侧极限) f(x)(a,b)[a,b]内有界的充要条件是:区间内任何一点都有极限值(两端点只要求有单侧极限)


八、连续性

1、已知连续,求分段函数参数

简单

2、已知连续,求分段函数四则运算新函数的参数

结合四则运算规律来求解,但是要注意:

  • F ( x ) = ( f ( x ) , g ( x ) ) ,则有:若 f ( x ) 和 g ( x ) 在 x 0 处连续,则 F ( x ) 在 x 0 处连续 F(x)=(f(x),g(x)),则有:若f(x)和g(x)在x_0处连续,则F(x)在x_0处连续 F(x)=(f(x),g(x)),则有:若f(x)g(x)x0处连续,则F(x)x0处连续
  • 但是若 F ( x ) 在 x 0 处连续,则 f ( x ) 和 g ( x ) 不一定在 x 0 处连续 但是若F(x)在x_0处连续,则f(x)和g(x)不一定在x_0处连续 但是若F(x)x0处连续,则f(x)g(x)不一定在x0处连续

九、间断性

只要不是位于无定义区间内的点,那么不连续就是间断

  • 初等函数的间断点只可能是分母为0的点
  • 分段函数的间断点只可能是分段点

根据函数表达式判断间断的步骤:

1.找出间断点

  • 先找定义域,不符合定义域的一定是间断点
  • 然后再根据分段点,找到可能的间断点

2.计算

  • 如果是给出的大括号式子给的分段点,就找正常的x0+,x0-来算
  • 如果只是根据绝对值找到的分段点,那就把绝对值当做整体先变形,说不定就把绝对值变没了,如果没有变没就再按照正常的x0+,x0-来算

十、函数嵌套数列极限问题

形如 f ( x ) = lim ⁡ n → ∞ ( n − 1 ) x n x 2 + 1 的函数,如果还要求函数极限的话就成了两重极限问题 形如f(x)=\lim_{n\to∞}\frac{(n-1)x}{nx^2+1}的函数,如果还要求函数极限的话就成了两重极限问题 形如f(x)=nlimnx2+1(n1)x的函数,如果还要求函数极限的话就成了两重极限问题

  • 这两重极限应该分开来求,先求内层数列极限,再求外层函数极限
  • 该函数的定义域按原始形式讨论,比如此例会解出f(x)=1/x,但是定义域要按照原始形式来也就是R,那缺少的x=0处的值就要代值补上f(0)=lim n->∞ 0=0
  • 这个点在求间断点时可能会用到

十一、介值定理及其推论零点定理

  • 基本题型:给定一个函数 f ( x ) 基本题型:给定一个函数f(x) 基本题型:给定一个函数f(x)
  • 要求 < 证明在 [ a , b ] 内至少有一个点 ξ ,使“ f ( ξ ) = φ ( ξ ) + ξ 无关的部分”成立 > 要求<证明在[a,b]内至少有一个点\xi,使“f(\xi)=\varphi(\xi)+\xi无关的部分”成立> 要求<证明在[a,b]内至少有一个点ξ,使f(ξ)=φ(ξ)+ξ无关的部分成立>
  • 解决方法如下:
    • 第一步:把 φ ( ξ ) 挪到左边构造 F ( x ) = f ( x ) − φ ( ξ ) 第一步:把\varphi(\xi)挪到左边构造F(x)=f(x)-\varphi(\xi) 第一步:把φ(ξ)挪到左边构造F(x)=f(x)φ(ξ)
    • 第二步:证明 ξ 无关的部分在最大值和最小值之间 第二步:证明\xi无关的部分在最大值和最小值之间 第二步:证明ξ无关的部分在最大值和最小值之间
      • 1. 先写出最终要证的结论 m ≤ ξ 无关部分 ≤ M ,开始反推 1.先写出最终要证的结论m≤\xi无关部分≤M,开始反推 1.先写出最终要证的结论mξ无关部分M,开始反推
      • 2. 将两边的 m 和 M 进行等价变形(一般是乘个特殊的 " 1 " ),使式子靠近已知条件 2.将两边的m和M进行等价变形(一般是乘个特殊的"1"),使式子靠近已知条件 2.将两边的mM进行等价变形(一般是乘个特殊的"1"),使式子靠近已知条件
  • 使用零点定理的场合其实是上述步骤的特例,是没有“无关部分”的题目

需要复习的内容

  • 三角函数和反三角函数的各种公式记忆
  • 数列的基本知识复习(如等差、等比的通项,前n项和求法等)
  • 基本不等式、绝对值不等式、三角不等式的记忆
  • 泰勒公式中,无穷小的计算
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值