推荐算法的优缺点

基于领域的协同过滤

基于矩阵分解

矩阵分解方法将高维User-Item评分矩阵映射为两个低维用户和物品矩阵,解决了数据稀疏性问题。

优点:
预测精度较高
缺点:
1、模型训练比较费时。
2、不具有很好的可解释性。分解出来的用户和物品矩阵的每个维度 无法和现实生活中的概念来解释,无法用现实概念给每个维度命名,只能理解为潜在语义空间

待填

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值