基于领域的协同过滤
基于矩阵分解
矩阵分解方法将高维User-Item评分矩阵映射为两个低维用户和物品矩阵,解决了数据稀疏性问题。
优点:
预测精度较高
缺点:
1、模型训练比较费时。
2、不具有很好的可解释性。分解出来的用户和物品矩阵的每个维度 无法和现实生活中的概念来解释,无法用现实概念给每个维度命名,只能理解为潜在语义空间
待填
矩阵分解方法将高维User-Item评分矩阵映射为两个低维用户和物品矩阵,解决了数据稀疏性问题。
优点:
预测精度较高
缺点:
1、模型训练比较费时。
2、不具有很好的可解释性。分解出来的用户和物品矩阵的每个维度 无法和现实生活中的概念来解释,无法用现实概念给每个维度命名,只能理解为潜在语义空间
待填