好友推荐
需求
该给hadoop推荐哪个间接好友呢?
两个人之间不认识,但是共同好友数越多,推荐的可能性越大
数据集
tom hello hadoop cat
world hadoop hello hive
cat tom hive
mr hive hello
hive cat hadoop world hello mr
hadoop tom hive world
hello tom world hive mr
A B C D E F
- 找到A到B C D E F的共同好友数
- A-B NUM1 A-C NUM2 A-D NUM3 A-E NUM4 A-F NUM5
- 按照共同好友数对B C D E F进行排序
- A-E NUM4 A-D NUM3 A-C NUM2 A-F NUM5 A-B NUM1
topN
tom hello hadoop cat
tom-hello 朋友
tom-hadoop 朋友
tom-cat 朋友
hello-hadoop 有共同好友
hello-cat 有共同好友
hadoop-cat 有共同好友
将全部文件遍历处理完毕,然后将所有的hello-hadoop的关系以及hadoop-hello的关系全部找出来,看一共多少个键值对,也就是共同好友数
cat_hadoop 2
cat_hello 2
cat, hadoop,2 通过cat_hadoop 2知道,可以给cat推荐hadoop,因为共同好友是2
hadoop cat,2 通过cat_hadoop 2知道,可以给haadoop推荐cat,因为共同好友是2
cat hello,2
hello cat,2
二次排序,分组比较器和排序比较器不一样
map:key LongWritable
value Text
日期+气温 将value中的指标拿出来组成一个新的key
分组的时候,需要将新的key拆开来比较
需要重写排序比较器/分组比较器
如何做好友推荐:
cat-hello 2
cat-hive 2
cat-world 1
hadoop-mr 1
hello-hive 4
hello-world 3
hive-tom 3
hive-world 4
tom-world 2
cat-hadoop 2
cat-mr 1
hadoop-hello 3
hadoop-hive 3
hadoop-world 3
hello-mr 3
hive-mr 3
mr-tom 1
mr-world 2
设计key
namea-nameb cofriendnum
给namea推荐nameb
namea-nameb cofriendnum
namea-namec cofriendnum
namea-named cofriendnum
namea-namee cofriendnum
输入数据来自第一个mapreduce的输出/mr/fof/output
输出:/mr/fof/output1
输入的一个键值对变为两个
cat-hello 2
cat-hello 2 给cat推荐hello
hello-cat 2 给hello推荐cat
分组:namea-nameb cofriendnum
依据“-”之前的名字进行分组
重写分组比较器
由于需要使用共同好友数倒序排列,所以需要重写排序比较器。
重新设计key
cat-hello-5 5
分区器需要重写,需要保证同一个前缀的人名的需要在一个分区。
mapper
特点
每一行是一条记录
每一条记录第一个名字是其本身
每一条记录第二个以后的名字是其好友
好友之间有可能认识
案例分析
思路:
推荐者与被推荐者一定有一个或多个相同的好友
全局去寻找好友列表中两两关系
去除直接好友
统计两两关系出现次数
API:
map:按好友列表输出两俩关系
reduce:sum两两关系
再设计一个MR
生成详细报表