国际数学竞赛:鸽笼原理

 

v2-a48cc437192d2eca4986f85d83ec38c8_1440w.avis (1063×401)

 

好久不见啦!你们的小星星又又又来啦!

今天我们不讲编程,看见上面的图片了吗,当然讲的是数学啦!

今天我们就讲一讲什么叫做“鸽笼原理”!

下面进入正题↓↓↓

———————————————————————————————————————————

有些论断看似没有道理,比如“一个班级里肯定有两个人生日在同一个月份”、“世界上肯定有两个人头发数一样多”等等,但是仔细一想还真是对的。

注:人类的头发根据种族和发色的不同,数量略有不同,最多在12万根左右;目前世界上的总人口超过了74亿;

再举一个例子,现在有十只鸽子但只有九个笼子,那么必定有一个笼子里至少有两只鸽子。因为九个鸽子先各占一个笼子,那么第十只就只能和其他鸽子挤挤了。

而上述看似显然的一个结论就是“鸽笼原理”(The Pigeonhole Principle),也叫“抽屉原理”。

如果有 n+1 只或者更多的鸽子,而只有 n 个笼子,那么必定有一只笼子中至少有2只鸽子。

如果把 k 件东西放入 n 个箱子中,那么必定有一个箱子中至少有 ⌈kn⌉ 件东西,其中 ⌈⋅⌉ 是取上整函数,不小于该值的最小整数。

我们千万不要小看这个原理,感觉就是说了一句废话,但运用到某些竞赛题中会有四两拨千斤的作用哦~。

下面我们通过竞赛题来实战一下,比如第一题2016AMC10A的第20题

题目大意:从1到2006中随机取出6个数(包括1和2006), 问其中存在一对数的差是5的倍数的概率是多少?

一眼就能看出来,这是一道概率题,按照古典概型的做法的话,我们要先搞清楚样本空间,数一下样本总数,这个比较简单 (2016 换行 6) ,但是满足要求的样本有多少个呢?这是一个问题,搞清楚了那么概率也就算出来了。

不过这道题有点不一样,不是这个套路了。下面我们证明一下随机选出来的6个数必定有一对数,它们的差值是5的倍数。(有点不按套路出牌)

证:因为一个数被5除,剩下的余数只有5种 {0,1,2,3,4} ,如果随机取6个数,必定有两个数的余数相同, 5k1+r,5k2+r,r∈{0,1,2,3,4} 。所以,必定存在一对数,它们的差是5的倍数, 5|5(k1−k2) 。因此,概率为1,这是必然事件。

当然,还有下题

题意:证明从100个整数中任意挑选15个数,其中必定存在一组数使任意一对数的差都是7的倍数。

与上题不同,这是一道证明题,但是做法是差不对的呦。

证:被7除的于是有 {0,1,2,3,4,5,6} 7种情况,那么把100个数放入到这7个"笼子"中,根据鸽笼原理可知,必定有一个"笼子"中至少有 ⌈1007⌉=15 个数,得证。

鸽笼原理对于解决存在性、任意性的问题是一把好手,解题的关键是构造笼子,这也是此类问题的难点。在此基础上更难的题型是,答案需要你自己去猜,然后再证明,往往是问满足条件的最小值是多少。

如下题

题意:一共有8各箱子,每个箱子装了6个球。每个球从 n 种颜色中挑一种着色,要求每个箱子中球的颜色各不相同,两种不同颜色的球在一起最多一次。问最少需要多少种颜色的球?

根据题意n=48 肯定是满足的,每个球的颜色都不相同,但这肯定不是最少的,所以我们要先猜去这个最小的 n ,并且要说明比这个小的都不能满足要求。

证:首先说明 n=23 是可行的,我们可以给出如下的着色方法:

其中每一行代表一个箱子,每一列代表一个球,数字代表一种颜色;
下面证明 n≤22 是不可能满足题意的。
(1)如果有一种颜色的球在5个或者更多的箱子中出现,那么必须要有 n≥5⋅5+1=26 种颜色,矛盾;
(2)如果有一种颜色的球在4个或者更多的箱子中出现,那么前4个箱子中一定含有 5⋅4+1=21 种颜色。

那么在第5个箱子中6个球可以从前4个箱子中挑4中颜色的球,但是剩下的两个必须要与前面21种颜色不同,所以至少需要23种颜色,矛盾;

(3)那么根据鸽笼原理一定有一种颜色的球出现在3个不同的箱子中(48个鸽子到22个笼子中)不妨假设颜色1出现在了3个箱子中,那么这三个箱子的颜色分别为

剩下的五个箱子中的6个球分别都可以从前三个箱子中挑3种颜色进行着色,不妨设为

于是我们还剩下22-16=6种颜色把15个球着色。与前面的分析类似,首先肯定不能有一种颜色的球出现在3个或者更多的箱子中,因为这样就需要 1+2⋅3=7 种颜色,矛盾;于是就只能有1种颜色的球出现在2个箱子中,而剩下的两只箱子里面的球可以按照下图进行着色

到这里,可以发现至少需要 23 种颜色,这与 n≤22 矛盾。
综上↑,最少的 n 为23。

这道题要比前面两题难了很多,不是一个level的,但是其中都运用了鸽笼原理。这样的题目还有问题,有一个比较有趣的问题可以思考下:

答案是肯定的,任意六个人中,必定存在三个人相互认识或三个人相互不认识。这其实就是Ramsey number, R(3,3)=6 ,可以利用鸽笼原理证明。

鸽笼原理一般应用在一些证明题中,特别是存在性的证明,在竞赛选择题中就出现比较少了,毕竟选择题只需要一个答案就够了。至于难点,前面也提到了,如何巧妙地构造笼子就要靠本事了。

———————————————————————————————————————————

好了,今天就到这了,我们下次再见!!!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值