重点解读《From Naptime to Big Sleep: Using Large Language Models To Catch Vulnerabilities In Real-World》

1. 引入

Google Project Zero团队搞了一个Naptime项目(参考2),提出了一套Agent框架,用来模拟安全研究员的行为。

然后,Google Project Zero团队与Google DeepMind团队合作,将Naptime项目升级,得到了Big Sleep项目,这也是一个Agent。

这篇文章(参考1)讲的是,Big Sleep Agent找到了一个SQLite中的,可以被利用的,栈溢出漏洞。

2. 重点

这篇文章(参考1)的重点,是讲解通过大模型的Agent与工具调用技术,可以真实的挖到漏洞。

比较有特色的是漏挖思路:This was a previous bug; there is probably another similar one somewhere。就是从项目中的一个已知漏洞出发,找到该项目其他类似成因的漏洞。这种思路具体来说分为如下步骤:

  1. 收集SQLite中的一系列近期的commits
  2. 手动删除一些不可能产生漏洞的commits,比如一些文档改动
  3. 修改提示词,让Agent,结合(1)commit消息(2)code change的diff,来review当前整个repo的代码,找到潜在问题

文章中的“Trajectory Highlights”部分,给出了Agent漏挖的核心过程,包括Agent的思考(ASSISTANT)和Agent工具调用的结果(TOOL)

至于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值