介绍
机器学习中,提取某个样本特征的过程,叫特征工程
。
同一个样本,可能具备不同类型的特征,各特征的数值大小范围不一致。所谓特征归一化
,就是将不同类型的特征数值大小变为一致的过程。
举例:假设有4个样本及他们的特征如下
样本 | 特征1 | 特征2 |
---|---|---|
1 | 10001 | 2 |
2 | 16020 | 4 |
3 | 12008 | 6 |
4 | 13131 | 8 |
可见归一化前,特征1和特征2的大小不是一个数量级。归一化后,特征变为
样本 | 特征1 | 特征2 |
---|---|---|
1 | 0 | 0 |
2 | 1 | 0.33 |
3 | 0.73 | 0.67 |
4 | 0.81 | 1 |
特征归一化
有很多不同的叫法,比如:特征缩放
,Feature Normalization
,Feature Scaling
,其实都是同一个意思。
特征归一化的意义
- 各特征之间的大小范围一致,才能使用距离度量等算法
- 加速梯度下降算法的收敛
- 在SVM算法中,一致化的特征能加速寻找支持向量的时间
- 不同的机器学习算法,能接受的输入数值范围不一样
两种常用特征归一化方法
下面详细介绍sklearn
中最常用的特征归一化方法MinMaxScaler
和StandardScaler
。
MinMaxScaler
使用
在sklearn
中,sklearn.preprocessing.MinMaxScaler
是一种用于特征归一化的方法。使用示例如下
from sklearn.preprocessing import MinMaxScaler
x=[[10001,2],[16020,4],[12008,6],[13131,8]]
min_max_scaler = MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(x)#归一化后的结果
X_train_minmax
array([[ 0. , 0. ],
[ 1. , 0.33333333],
[ 0.33344409, 0.66666667],
[ 0.52001994, 1. ]])
它默认将每种特征的值都归一化到[0,1]之间,归一化后的数值大小范围是可调的(根据MinMaxScaler
的参数feature_range
调整)。下面代码能将特征归一化到[-1,1]之间。
min_max_scaler = MinMaxScaler(feature_range=(-1,1))
X_train_minmax = min_max_scaler.fit_transform(x)#归一化后的结果
X_train_minmax
array([[-1. , -1. ],
[ 1. , -0.33333333],
[ 0.46574339, 0.33333333],
[ 0.6152873 , 1. ]])
实现
MinMaxScaler
的实现公式如下
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min
这是向量化的表达方式,说明X是矩阵,其中
- X_std:将X归一化到[0,1]之间
- X.min(axis=0)表示列最小值
- max,min表示
MinMaxScaler
的参数feature_range
参数。即最终结果的大小范围
以下例说明计算过程(max=1,min=0)
样本 | 特征1 | 特征2 |
---|---|---|
1 | 10001 | 2 |
2 | 16020 | 4 |
3 | 12008 | 6 |
4 | 13131 | 8 |
X.max | 16020 | 8 |
X.min | 10001 | 2 |
归一化的过程如下,假设归一化后的矩阵为S
- S11=(10001-10001)/(16020-10001)=0
- S21=(16020-10001)/(16020-10001)=1
- S31=(12008-10001)/(16020-10001)=0.333444
- S41=(13131-10001)/(16020-10001)=0.52002
- S12=(2-2)/(8-2)=0
- S22=(4-2)/(8-2)=0.33
- S32=(6-2)/(8-2)=0.6667
- S42=(8-2)/(8-2)=1
可见,结果与章节“MinMaxScaler使用”中的计算结果一致。
StandardScaler
使用
在sklearn
中,sklearn.preprocessing.StandardScaler
是一种用于特征归一化的方法。使用示例如下
from sklearn.preprocessing import StandardScaler
x=[[10001,2],[16020,4],[12008,6],[13131,8]]
X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(x)
X_train
array([[-1.2817325 , -1.34164079],
[ 1.48440157, -0.4472136 ],
[-0.35938143, 0.4472136 ],
[ 0.15671236, 1.34164079]])
归一化后,矩阵每列的均值为0,标准差为1。注意,这里的标准差是指加了Delta Degrees of Freedom
因子后的标准差,这与传统的标准差计算公式有区别。(在numpy中,有std()函数用于计算标准差)
实现
StandardScaler的归一化方式是用每个特征减去列均值,再除以列标准差。
以下例说明计算过程,注意标准差是用np.std()
计算的。
样本 | 特征1 | 特征2 |
---|---|---|
1 | 10001 | 2 |
2 | 16020 | 4 |
3 | 12008 | 6 |
4 | 13131 | 8 |
列均值 | 12790 | 5 |
列标准差 | 2175.96 | 2.236 |
归一化的过程如下,假设归一化后的矩阵为S
- S11=(10001-12790)/2175.96=-1.28173
- S21=(16020-12790)/2175.96=1.484
- S31=(12008-12790)/2175.96=-0.35938
- S41=(13131-12790)/2175.96=0.1567
- S12=(2-5)/2.236=-1.342
- S22=(4-5)/2.236=-0.447
- S32=(6-5)/2.236=0.447
- S42=(8-5)/2.236=1.3416
总结
本文详细介绍了MinMaxScaler
和StandardScaler
的计算过程。有这个过程可以看出:
- 当我们需要将特征值都归一化为某个范围[a,b]时,选
MinMaxScaler
- 当我们需要归一化后的特征值均值为0,标准差为1,选
StandardScaler