为什么正则化能减少模型过拟合程度

本文通过直观的图表和实例解析了正则化如何帮助减少机器学习模型的过拟合现象。首先介绍了过拟合的基本概念,并展示了通过调整权重大小使模型复杂度下降的过程。接着,针对线性模型和神经网络,详细说明了正则化系数的作用及其如何影响模型的非线性程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何才能直观解释正则化减少过拟合的原理?

(1)过拟合

以下图为例。High Bias(高偏差)就是欠拟合,High Variance(高方差)就是过拟合。

这里写图片描述

为了将过拟合的模型变为正好(Just Right),从图中直观上来看,只需要减小高次项的权重。

这就是降低过拟合的直观理解。从数学上,我们用正则化来降低模型的过拟合程度。

(2)正则化

简单来说,所谓正则化,就是在原Cost Fucntion上添加正则化项(如下图)。

这里写图片描述

正则化项能减少模型的非线性程度,从而降低模型的过拟合。从图中来看,正则化项能将过拟合的模型(蓝色)变为Just Right的模型(粉红色)。

(3)为什么正则化有效?

分情况讨论

  • A. 对于线性模型,其添加了正则化项的Cost Function如下图。

这里写图片描述

直观的理解,如果我们的正则化系数(lambda)无穷大,则权重w就会趋近于0。权重变小,非线性程度自然就降低了。

  • B. 对于神经网络,其激活函数(以tanh为例)如下图

这里写图片描述

直观的理解,如果我们的正则化系数(lambda)无穷大,则权重w就会趋近于0。权重变小,激活函数输出z变小。z变小,就到了激活函数的线性区域,从而降低了模型的非线性化程度。

参考

Andrew NG的视频

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值