详解python中的Lock与RLock

摘要

首先讲解不加锁在多线程中会导致的问题,然后用实例说明如何通过加锁让函数变为线程安全的函数。也通过实例说明了RLockLock的区别:在同一线程内,对RLock进行多次acquire()操作,程序不会阻塞。

threading.Lock的用法

下面是一个python多线程的例子:

import threading

# global var
count = 0

# Define a function for the thread
def print_time(threadName):
    global count

    c=0
    while(c<100):
        c+=1
        count+=1
        print("{0}: set count to {1}".format( threadName, count) )

# Create and run threads as follows
try:
    threading.Thread( target=print_time, args=("Thread-1", ) ).start()
    threading.Thread( target=print_time, args=("Thread-2", ) ).start()
    threading.Thread( target=print_time, args=("Thread-3", ) ).start()
except Exception as e:
    print("Error: unable to start thread")

在这个例子中,我们start了3个线程,每个线程都会对全局资源count进行改写操作。得到的结果如下,每个thread都会交替对count值进行修改。

Thread-1: set count to 198
Thread-2: set count to 199
Thread-1: set count to 200
Thread-2: set count to 201
Thread-1: set count to 202
Thread-2: set count to 203
Thread-1: set count to 204
Thread-2: set count to 205

由于多线程共享进程的资源和地址空间,因此,在对这些公共资源进行操作时,为了防止这些公共资源出现异常的结果,必须考虑线程的同步和互斥问题。我们可以对上例中的print_time()中访问资源的代码加锁,就可以把这个函数变为线程安全的函数。具体代码如下:

import threading

# global var
count = 0
lock = threading.Lock()

# Define a function for the thread
def print_time(threadName):
    global count

    c=0
    with lock:
        while(c<100):
            c+=1
            count+=1
            print("{0}: set count to {1}".format( threadName, count) )

# Create and run threads as follows
try:
    threading.Thread( target=print_time, args=("Thread-1", ) ).start()
    threading.Thread( target=print_time, args=("Thread-2", ) ).start()
    threading.Thread( target=print_time, args=("Thread-3", ) ).start()
except Exception as e:
    print("Error: unable to start thread")

通过threading.Lock(),就能实现加锁。这样每个thread对count进行改动期间,就不会有其它的thread插入进来改动count。得到的输出如下:

Thread-2: set count to 199
Thread-2: set count to 200
Thread-3: set count to 201
Thread-3: set count to 202
Thread-3: set count to 203
Thread-3: set count to 204

锁的使用,有两种方法,上面的是最简单的通过with lock来操作。

还有另一种用法,是通过Lock的acquire()release()函数来控制加锁和解锁,如下例,得到的结果和上例相同:

import threading

# global var
count = 0
lock = threading.Lock()

# Define a function for the thread
def print_time(threadName):
    global count

    c=0
    if(lock.acquire()):
        while(c<100):
            c+=1
            count+=1
            print("{0}: set count to {1}".format( threadName, count) )
        lock.release()
# Create and run threads as follows
try:
    threading.Thread( target=print_time, args=("Thread-1", ) ).start()
    threading.Thread( target=print_time, args=("Thread-2", ) ).start()
    threading.Thread( target=print_time, args=("Thread-3", ) ).start()
except Exception as e:
    print("Error: unable to start thread")

LockRLock的区别

上例中,我们使用threading.Lock()来进行加锁。threading中还提供了另外一个threading.RLock(),那么问题来了,LockRLock有什么区别呢?

既然要讨论区别,那我们应该明白,他们的功能,大部分是相同的,很多情况下可以通用,但有细微的区别。

从原理上来说:在同一线程内,对RLock进行多次acquire()操作,程序不会阻塞。

用一个例子来说明:

import threading


lock = threading.RLock()

def f():
  with lock:
    g()
    h()

def g():
  with lock:
    h()
    do_something1()

def h():
  with lock:
    do_something2()

def do_something1():
    print('do_something1')

def do_something2():
    print('do_something2')


# Create and run threads as follows
try:
    threading.Thread( target=f ).start()
    threading.Thread( target=f ).start()
    threading.Thread( target=f ).start()
except Exception as e:
    print("Error: unable to start thread")

每个thread都运行f()f()获取锁后,运行g(),但g()中也需要获取同一个锁。如果用Lock,这里多次获取锁,就发生了死锁。
但我们代码中使用了RLock。在同一线程内,对RLock进行多次acquire()操作,程序不会堵塞,所以我们可以得到如下的输出:

do_something2
do_something1
do_something2
do_something2
do_something1
do_something2
do_something2
do_something1
do_something2

参考

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值