经典算法思想题目-爬楼梯问题

文章介绍了爬楼梯问题的动态规划解决方案,通过定义子问题、确定边界条件和递推公式,给出O(n)时间复杂度和O(n)空间复杂度的解法,并进一步优化至O(1)空间复杂度。此外,还提到了递归解法作为对比。
摘要由CSDN通过智能技术生成

 爬楼梯问题

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意: 给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

解法:动态规划

动态规划(Dynamic Programming,DP)是一种将复杂问题分解成小问题求解的策略,但与分治算法不同的是,分治算法要求各子问题是相互独立的,而动态规划各子问题是相互关联的。

分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

我们使用动态规划求解问题时,需要遵循以下几个重要步骤:

  • 定义子问题
  • 实现需要反复执行解决的子子问题部分
  • 识别并求解出边界条件

第一步:定义子问题

如果用 dp[n] 表示第 n 级台阶的方案数,并且由题目知:最后一步可能迈 2 个台阶,也可迈 1 个台阶,即第 n 级台阶的方案数等于第 n-1 级台阶的方案数加上第 n-2 级台阶的方案数

第二步:实现需要反复执行解决的子子问题部分

dp[n] = dp[n−1] + dp[n−2]

第三步:识别并求解出边界条件

// 第 0 级 1 种方案 
dp[0]=1 
// 第 1 级也是 1 种方案 
dp[1]=1

最后一步:把尾码翻译成代码,处理一些边界情况

let climbStairs = function(n) {
    let dp = [1, 1]
    for(let i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n]
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

优化空间复杂度:

let climbStairs = function(n) {
    let res = 1, n1 = 1, n2 = 1
    for(let i = 2; i <= n; i++) {
        res = n1 + n2
        n1 = n2
        n2 = res
    }
    return res
}

空间复杂度:O(1)

爬楼梯问题是一个经典的算法思想题目,可以用动态规划或递归来解决。

问题描述:假设你正在爬楼梯,楼梯有n阶。你可以一次爬一阶或两阶,求解爬到楼梯顶部有多少种不同的方法。

解决方法1 - 动态规划:
1. 定义一个长度为n+1的数组dp,其中dp[i]表示爬到第i阶楼梯的不同方法数。
2. 根据题目要求,当n=0时,表示已经到达楼顶,有1种方法;当n=1时,只有1阶楼梯可供爬,也只有1种方法。
3. 对于n>1的情况,可以爬1阶楼梯到达第i阶,或爬2阶楼梯到达第i阶。所以,到达第i阶的方法数为到达第i-1阶和到达第i-2阶的方法数之和。
   即,dp[i] = dp[i-1] + dp[i-2]。
4. 最终,返回dp[n]即可得到爬楼梯的方法总数。

解决方法2 - 递归:
1. 定义一个递归函数countWays(n),表示爬到第n阶楼梯的不同方法数。
2. 当n=0时,表示已经到达楼顶,有1种方法;当n=1时,只有1阶楼梯可供爬,也只有1种方法。
3. 对于n>1的情况,可以爬1阶楼梯到达第n阶,或爬2阶楼梯到达第n阶。所以,countWays(n) = countWays(n-1) + countWays(n-2)。
4. 在递归函数中,使用递归方式调用countWays(n-1)和countWays(n-2),直到n=0或n=1时返回相应的值即可。

选择使用动态规划还是递归来解决爬楼梯问题,可以根据具体的问题规模和需求来选择。动态规划一般较为高效,适用于大规模问题;递归较为直观,适用于小规模问题或对问题解法的思考和理解上。

好的,针对您的问题,我来讲一下动态规划爬楼梯问题5个台阶的分析方法。 在动态规划中,我们通常会使用一个数组来存储子问题的解,以便后续的子问题可以直接使用已解决的子问题的解,从而避免重复计算。对于爬楼梯问题,我们可以使用一个一维数组来存储到达每个台阶的不同路径数量。 以下是对于5个台阶的分析方法: 1. 递推法:根据题目可知,到达第n个台阶的方法数为到达第n-1和第n-2个台阶的方法数之和,因此可以使用递推的方式来求解。具体实现可以使用一个一维数组dp来存储到达每个台阶的方法数,从dp[0]开始逐个计算,最终返回dp[n]即可。 2. 递归法:类似于递推法,也是通过递归的方式来求解。递归终止条件为到达第0个台阶和第1个台阶的方法数分别为1和1,递归求解到达n-1和n-2个台阶的方法数,最终返回它们之和即可。 3. 记忆化搜索法:在递归法的基础上,加入了记忆化的思想,即在求解每个子问题时,先查看该子问题是否已经计算过,如果已经计算过,则直接返回已有的解。如果没有计算过,则递归求解,并将结果存储到一个数组中,以便后续的子问题可以直接使用已解决的子问题的解。 4. 斐波那契数列法:利用斐波那契数列的递推公式,即f(n)=f(n-1)+f(n-2),来求解爬楼梯问题。具体实现可以使用两个变量f1和f2来存储f(n-1)和f(n-2)的值,然后依次更新它们的值,最终返回f(n)即可。 5. 矩阵快速幂法:在斐波那契数列法的基础上,利用矩阵快速幂的思想,可以将时间复杂度从O(n)降低到O(logn)。具体实现可以将斐波那契数列的递推公式转化为矩阵的形式,然后使用矩阵快速幂的方式来求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值