爬楼梯问题
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意: 给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
解法:动态规划
动态规划(Dynamic Programming,DP)是一种将复杂问题分解成小问题求解的策略,但与分治算法不同的是,分治算法要求各子问题是相互独立的,而动态规划各子问题是相互关联的。
分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。
我们使用动态规划求解问题时,需要遵循以下几个重要步骤:
- 定义子问题
- 实现需要反复执行解决的子子问题部分
- 识别并求解出边界条件
第一步:定义子问题
如果用 dp[n] 表示第 n 级台阶的方案数,并且由题目知:最后一步可能迈 2 个台阶,也可迈 1 个台阶,即第 n 级台阶的方案数等于第 n-1 级台阶的方案数加上第 n-2 级台阶的方案数
第二步:实现需要反复执行解决的子子问题部分
dp[n] = dp[n−1] + dp[n−2]
第三步:识别并求解出边界条件
// 第 0 级 1 种方案
dp[0]=1
// 第 1 级也是 1 种方案
dp[1]=1
最后一步:把尾码翻译成代码,处理一些边界情况
let climbStairs = function(n) {
let dp = [1, 1]
for(let i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2]
}
return dp[n]
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
优化空间复杂度:
let climbStairs = function(n) {
let res = 1, n1 = 1, n2 = 1
for(let i = 2; i <= n; i++) {
res = n1 + n2
n1 = n2
n2 = res
}
return res
}
空间复杂度:O(1)
爬楼梯问题是一个经典的算法思想题目,可以用动态规划或递归来解决。
问题描述:假设你正在爬楼梯,楼梯有n阶。你可以一次爬一阶或两阶,求解爬到楼梯顶部有多少种不同的方法。
解决方法1 - 动态规划:
1. 定义一个长度为n+1的数组dp,其中dp[i]表示爬到第i阶楼梯的不同方法数。
2. 根据题目要求,当n=0时,表示已经到达楼顶,有1种方法;当n=1时,只有1阶楼梯可供爬,也只有1种方法。
3. 对于n>1的情况,可以爬1阶楼梯到达第i阶,或爬2阶楼梯到达第i阶。所以,到达第i阶的方法数为到达第i-1阶和到达第i-2阶的方法数之和。
即,dp[i] = dp[i-1] + dp[i-2]。
4. 最终,返回dp[n]即可得到爬楼梯的方法总数。
解决方法2 - 递归:
1. 定义一个递归函数countWays(n),表示爬到第n阶楼梯的不同方法数。
2. 当n=0时,表示已经到达楼顶,有1种方法;当n=1时,只有1阶楼梯可供爬,也只有1种方法。
3. 对于n>1的情况,可以爬1阶楼梯到达第n阶,或爬2阶楼梯到达第n阶。所以,countWays(n) = countWays(n-1) + countWays(n-2)。
4. 在递归函数中,使用递归方式调用countWays(n-1)和countWays(n-2),直到n=0或n=1时返回相应的值即可。
选择使用动态规划还是递归来解决爬楼梯问题,可以根据具体的问题规模和需求来选择。动态规划一般较为高效,适用于大规模问题;递归较为直观,适用于小规模问题或对问题解法的思考和理解上。