Visual Adversarial Examples Jailbreak Aligned Large Language Models
更多大模型安全相关以及机器学习相关的文章见主页
https://y-icecloud.github.io/
1. 前置知识
对抗性样本:
- 对抗性样本是指在原始数据上添加特定的干扰,这个干扰是像素级别的修改,人几乎看不出来变化,但是会对模型产生误导
- 一般是基于梯度来生成,使之损失变大
红队攻击(Red-teaming):
在AI和机器学习中,红队攻击指的是通过模拟恶意用户的行为,主动寻找并利用模型的潜在弱点
2. 论文大体介绍
此文在多模态大模型的产生下,提出了对抗性攻击,这种攻击通过改变图片中的像素,来进行攻击,这种攻击被证明是非常有效的。与此同时,这种对抗性攻击,还有通用性,对绝大多数的对齐模型都能迁移起作用。最后还展望了对其他种类模态信息的探究。
3. 论文背景
革命:最近人们将视觉融合到LLM中的兴趣激增,导致VLM的出现。
复杂性:然而,多模态模型增加了模型的复杂度和攻击面,这对于确保模型的安全性和可靠性构成了挑战。
4. 方法原理
视觉输入:因为视觉输入的连续性和高维性,使之成为对抗攻击的薄弱之处
白盒攻击:知道模型权重,便于进行生成对抗性样本
黑盒攻击:不知道模型权重,但是这个攻击可以在多个模型之间移植,实现全面性,实现更加通用的攻击
对抗性样本:针对的并不是一种特殊的指令,而是一种通用的指令,能够使绝大多数有害文本可以得到输出
对抗性样本构建方式:
-
攻击的目的是构建一个对抗性输入 x adv x_{\text{adv}} xadv,使模型在给定 x adv