Visual Adversarial Examples Jailbreak Aligned Large Language Models论文阅读

Visual Adversarial Examples Jailbreak Aligned Large Language Models

更多大模型安全相关以及机器学习相关的文章见主页
https://y-icecloud.github.io/

文章链接

论文代码

1. 前置知识


对抗性样本

  • 对抗性样本是指在原始数据上添加特定的干扰,这个干扰是像素级别的修改,人几乎看不出来变化,但是会对模型产生误导
  • 一般是基于梯度来生成,使之损失变大

红队攻击(Red-teaming)

在AI和机器学习中,红队攻击指的是通过模拟恶意用户的行为,主动寻找并利用模型的潜在弱点

2. 论文大体介绍


此文在多模态大模型的产生下,提出了对抗性攻击,这种攻击通过改变图片中的像素,来进行攻击,这种攻击被证明是非常有效的。与此同时,这种对抗性攻击,还有通用性,对绝大多数的对齐模型都能迁移起作用。最后还展望了对其他种类模态信息的探究。

3. 论文背景


革命:最近人们将视觉融合到LLM中的兴趣激增,导致VLM的出现。

复杂性:然而,多模态模型增加了模型的复杂度和攻击面,这对于确保模型的安全性和可靠性构成了挑战。

4. 方法原理


视觉输入:因为视觉输入的连续性和高维性,使之成为对抗攻击的薄弱之处

白盒攻击:知道模型权重,便于进行生成对抗性样本

黑盒攻击:不知道模型权重,但是这个攻击可以在多个模型之间移植,实现全面性,实现更加通用的攻击

对抗性样本:针对的并不是一种特殊的指令,而是一种通用的指令,能够使绝大多数有害文本可以得到输出

对抗性样本构建方式

  • 攻击的目的是构建一个对抗性输入 x adv x_{\text{adv}} xadv,使模型在给定 x adv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

y-icecloud

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值