论文标题
Visual Adversarial Examples Jailbreak Aligned Large Language Models 视觉对抗样本越狱对齐的大型语言模型
论文链接
Visual Adversarial Examples Jailbreak Aligned Large Language Models 视觉对抗样本越狱对齐的大型语言模型论文下载
论文作者
Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, Prateek Mittal
内容简介
本文探讨了将视觉信息整合到大型语言模型(LLMs)中的安全和安全风险。研究指出,视觉输入的连续性和高维性使其成为对抗性攻击的薄弱环节,扩大了视觉集成LLMs的攻击面。此外,LLMs的多功能性为视觉攻击者提供了更广泛的对抗目标,超越了单纯的错误分类。通过案例研究,作者展示了如何利用视觉对抗样本绕过已对齐LLMs的安全防护,迫使模型遵循有害指令并生成有害内容。研究强调了追求多模态所带来的对抗风险,并将神经网络的对抗性脆弱性与AI对齐领域联系起来。
分点关键点
1.攻击面的扩大
视觉输入的整合使得LLMs面临更大的攻