Description
Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
Input
* Line 1: Two space-separated integers, N and F.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
Output
* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.
Sample Input
10 6 6 4 2 10 3 8 5 9 4 1
Sample Output
6500
关于这个动规思想主要是用二分去寻找恰当的值
然后求在某一段上的满足条件的段
用dp的式子就是s[m]=max(s[m-1]+a[i],s[i]-s[i-m]);
举个例子来说,有一串数:1 2 3 4 5 6 7 8
假设长度至少需要3,那么就是s[3]就是6,这个是可以确定的
然后下一个我们的长度如果需要正好是3,那么可能的取值就是
{(1 2 3) ,(2 ,3 ,4), (3,4,5)...(6,7,8));
但是如果是大于3呢?
假设可能的长度为4或3
那么当前的子问题是(1,2,3,4)和(2,3,4)的那个平均数大的问题
由上递推可得,最后的一定为最优解