kaggle
遇见更好的自己
非淡泊无以明志,非宁静无以致远
展开
-
stacking 模型融合
结合策略假定集成包含T个基学习器,其中h_i在示例x上的输出为h_i(x).对于数值型的输出,最常见的结合策略是averaging.分为simple averaging 和 weighted averaging.对于分类任务,最常见的结合策略是voting.当训练数据很多时,一种更为强大的结合策略是使用学习法,即通过另一个学习器来结合。Stacking是学习法的典型代表。原创 2017-06-21 08:57:37 · 4588 阅读 · 0 评论 -
Kaggle 流程
1.Data Exploration1.1. Visualization对 Numerical Variable,可以用 Box Plot 来直观地查看它的分布对于坐标类数据,可以用Scatter Plot来查看他们的分布趋势和是否有离群点的存在对于分类问题,将数据根据Label的不同着不同的色,这对于特征的构造很有帮助2.Data Preprocessing转载 2017-06-13 20:27:02 · 319 阅读 · 0 评论 -
能源预测与分配类问题
特征提取天气类的特征Time of dayDay of yearDay of week一些历史性的数据,比如48/72小时前的数据原创 2018-01-16 11:15:38 · 589 阅读 · 0 评论