连载笔记| k-近邻算法实战笔记(上)

点击上方 蓝字可以订阅哦   k-近邻算法实战笔记(上)

    目前,机器学习的学习者众多,他们都异口同声地反映了同一个需求:“实战”。鉴于此,小编在此向大家推荐由 csdn博客专家Jack-Cui 撰写的《机器学习实战》系列笔记。今天,给大家分享该学习笔记的第一篇《K-近邻算法》(上)



《k-近邻算法》笔记内容概要

       《k-近邻算法》笔记分上、中、下三篇,将从k-近邻算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,也对sklearn实现k-近邻算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。

本文出现的所有代码和数据集,均可在github上下载,欢迎Follow、Star:github.com/Jack-Cherish 。 欢迎关注作者的知乎专栏《Python3机器学习》。结合本文,南京航空航天大学硕士“深度眸”为大家录制了视频:http://pan.baidu.com/s/1i55VVM1 (密码 qllk)。

本文是《k-近邻算法》笔记上篇。

/Machine-Learning/tree/master/kNN

1、k-近邻法简介

       k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。

一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类

     举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。

表1  每部电影的打斗镜头数、接吻镜头数以及电影类型

     表1  就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。

以我们多年的看片经验,这个分类是合理的。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点。当然,具体还取决于数据集的大小以及最近邻的判断标准等因素。


2、距离度量

       我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1为例,怎么判断红色圆点标记的电影所属的类别呢? 如下图所示。

图:电影分类

我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,。

通过计算,我们可以得到如下结果:

  • (101,20)->动作片(108,5)的距离约为16.55

  • (101,20)->动作片(115,8)的距离约为18.44

  • (101,20)->爱情片(5,89)的距离约为118.22

  • (101,20)->爱情片(1,101)的距离约为128.69

通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-近邻算法是什么呢?

k-近邻算法步骤如下:

  1. 计算已知类别数据集中的点与当前点之间的距离;

  2. 按照距离递增次序排序;

  3. 选取与当前点距离最小的k个点;

  4. 确定前k个点所在类别的出现频率;

  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。


3、Python代码实现

我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。

(1)准备数据集

对于表1中的数据,我们可以使用numpy直接创建,代码如下:

# -*- coding: UTF-8 -*-
import numpy as np

"""函数说明:创建数据集
Parameters:    无    
Returns:    
group - 数据集    
labels - 分类标签    
Modify:    2017-07-13"""
def createDataSet():    #四组二维特征    group = np.array([[1,101],[5,89],[108,5],[115,8]])    #四组特征的标签    labels = ['爱情片','爱情片','动作片','动作片']    return group, labelsif __name__ == '__main__':    #创建数据集    group, labels = createDataSet()    #打印数据集    print(group)    print(labels)
运行结果如下

(2)k-近邻算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

import operator


"""函数说明:kNN算法,分类器

Parameters:    

   inX - 用于分类的数据(测试集)    

   dataSet - 用于训练的数据(训练集)    

   labes - 分类标签    

   k - kNN算法参数,选择距离最小的k个点    

Returns:    

    sortedClassCount[0][0] - 分类结果

Modify:    2017-07-13"""

def classify0(inX, dataSet, labels, k):

      #numpy函数shape[0]返回dataSet的行数    

      dataSetSize = dataSet.shape[0]    

      #在列向量方向上重复inX共1次(横向),

      #行向量方向上重复inX共dataSetSize次(纵向)     

      diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet    

      #二维特征相减后平方    

      sqDiffMat = diffMat**2    

      #sum()所有元素相加,sum(0)列相加,sum(1)行相加    

      sqDistances = sqDiffMat.sum(axis=1)    

      #开方,计算出距离    

      distances = sqDistances**0.5    

      #返回distances中元素从小到大排序后的索引值   

      sortedDistIndices = distances.argsort()    

      #定一个记录类别次数的字典    

      classCount = {}    


      for i in range(k):        

            #取出前k个元素的类别        

            voteIlabel = labels[sortedDistIndices[i]] 

            #计算类别次数         

            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

      #python3中用items()替换python2中的iteritems() 

      key=operator.itemgetter(0)根据字典的键进行排序    

      #reverse降序排序字典   

      sortedClassCount = sorted(classCount.items(),     key=operator.itemgetter(1),reverse=True)     

      #返回次数最多的类别,即所要分类的类别    

      return sortedClassCount[0][0]



if __name__ == '__main__':    

    #创建数据集    

    group, labels = createDataSet()    

    #测试集    

    test = [101,20]    

    #kNN分类    

    test_class = classify0(test, group, labels, 3)    

    #打印分类结果    

    print(test_class)



运行结果如下


可以看到,分类结果根据我们的"经验",是正确的,尽管这种分类比较耗时,用时1.4s。

到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两 点距离公式计算,但是如果是更高维的呢?对,没错。我们可以用欧氏距离(也称欧几里德度量),如下图所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。

图:欧氏距离公式

       

    看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。

错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-近邻算法不具有显式的学习过程。


4、后续内容预告

后面的连载笔记系列,将带大家进入具体实战内容(结合具体任务和数据集)

k-近邻算法实战笔记(中):约会网站配对效果判定

k-近邻算法实战笔记(下):sklearn手写数字识别



推荐阅读

【机器学习之家】历史文章整理

机器学习简介与学习路线

[资源下载]张宇老师讲授的数学视频(概率+高数+线代)

逻辑回归模型的前世今生





私房文章*海量资料*关注我





点击下方“阅读原文”获得 本文源码github下载地址↓↓↓


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值