PAT A1087 All Roads Lead to Rome【DIjkstra+DFS】

在这里插入图片描述
Dijkstra可以在查找最小的d时使用优先队列,这样能降低时间复杂度。

题目描述

在这里插入图片描述
多重条件Dijkstra

知识点

图的最短路径,Dijkstra

实现

码前思考

  1. 只是在裸的Dijkstra算法上增加了happinessaverage happiness的比较;
  2. 需要注意的是需要输出最短路径的条数,需要每次都记录下来;
  3. 第一个路径是不计入average happiness的计算的;

代码实现

#include <iostream>
#include <cstring>
#include <vector>
#include <map>
#include <stack>
#include <algorithm>
using namespace std;
const int maxn = 210;
const int INF = 0x3fffffff;

struct node{
	int v;
	int cost;
	node(){};
	node(int _v,int _cost):v(_v),cost(_cost){}
}; 

map<string,int> mapp;
map<int,string> rev; 
int n;
int k;
int cnt;
//记录终点坐标 
int e;
int happy[maxn];
vector<node> adj[maxn];
bool vis[maxn];
int d[maxn];
int h[maxn];
int pre[maxn];
int cntLeast[maxn];
int cntLen[maxn];

void Dijkstra(){
	//初始化
	fill(vis,vis+maxn,false);
	fill(d,d+maxn,INF);
	fill(h,h+maxn,0);
	fill(cntLeast,cntLeast+maxn,0);
	fill(cntLen,cntLen+maxn,0);
	d[0]=0;
	cntLen[0]=0;
	cntLeast[0]=1;
	pre[0]=-1;
	
	//开始进行
	for(int i=0;i<n;i++){
		int u = -1;
		int min = INF;
		
		for(int j=0;j<n;j++){
			if(vis[j] == false && d[j] < min){
				min = d[j];
				u = j;
			}
		}
		
		if(u == e){
			return;
		}
		vis[u] = true;
		
		for(int j=0;j<adj[u].size();j++){
			int v = adj[u][j].v;
			int cost = adj[u][j].cost;
			//如果是有更小的啦 
			if(vis[v] == false){
				if(d[u] + cost < d[v]){
					//更新下面数据 
					cntLeast[v] = cntLeast[u];
					h[v] = h[u] + happy[v];
					pre[v] = u;
					cntLen[v] = cntLen[u]+1;
					d[v] = d[u] + cost;					
				}else if(d[u] + cost == d[v]){
					//那么就需要首先增加最短路径的数量
					cntLeast[v]+=cntLeast[u];
					//然后判断第二个准则
					if(h[u] + happy[v] > h[v]){
						h[v] = h[u] + happy[v];
						pre[v] = u;
						cntLen[v] = cntLen[u]+1;
						d[v] = d[u] + cost;	
					}else if(h[u] + happy[v] == h[v]){
						//需要判断平均值
						double avg1 = h[v]*1.0 / cntLen[v];
						double avg2 = h[v]*1.0 / (cntLen[u]+1);			
						if(avg1 < avg2){
							h[v] = h[u] + happy[v];
							pre[v] = u;
							cntLen[v] = cntLen[u]+1;
							d[v] = d[u] + cost;								
						}
					} 
				}

			}
		}
	} 
	
	return;
}

int main(){
	fill(happy,happy+maxn,0);
	
	scanf("%d %d",&n,&k);
	cnt = 0;
	//读取起点
	string start;
	cin>>start;
	mapp[start] = cnt;
	rev[cnt] = start;
	cnt++;
	e = -1;
	
	//接下来输入happy值,注意找ROM
	for(int i=0;i<n-1;i++){
		char tmp[5];
		int val;
		scanf("%s %d",tmp,&val);
		string city = tmp;
		if(city == "ROM"){
			e = cnt;
		}
		happy[cnt] = val;
		mapp[city] = cnt;
		rev[cnt] = city;
		cnt++;
	}
	
	//接下来读取邻接距离 
	for(int i=0;i<k;i++){
		string ustr,vstr;
		int cost;
		cin>>ustr;
		cin>>vstr;
		cin>>cost;
		int u = mapp[ustr];
		int v = mapp[vstr];
		//printf("%d %d\n",u,v);
		adj[u].push_back(node(v,cost));
		adj[v].push_back(node(u,cost));
	}
	
	//使用Dijkstra算法来解题
	Dijkstra(); 
	 
	//输出结果
	printf("%d %d %d %d\n",cntLeast[e],d[e],h[e],h[e]/cntLen[e]);
	
	//接下来输出路径,使用栈来保存
	stack<int> stk;
	int v = e;
	while(v!=-1){
		stk.push(v);
		v = pre[v];
	}
	while(!stk.empty()){
		int u = stk.top();
		stk.pop();
		string city;
		city = rev[u];
		cout<<city;
		if(city!="ROM"){
			cout<<"->";
		}
	} 
	 
	return 0;
}

码后反思

  1. 模板题,主要是思考清楚多重条件的写法!

二刷代码

没有写了,主要使用Dijkstra+DFS会更加清晰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值