这里写目录标题
一、GPU环境配置
1.安装软件
安装Anaconda3+Pycharm(已经安装的跳过)
这里就不详细介绍安装过程,以下提供两个安装包的网盘链接:
链接: Anaconda3
链接: Pycharm
2.安装CUDA
首先查看显卡所支持的最高CUDA版本,按win+r键,输入cmd进入管理界面输入:nvidia-smi
如图所示:
需要更新下载的可以下方链接网站下载,推荐达到11.8以上。安装默认路径,选项全勾选。
https://developer.nvidia.com/cuda-toolkit-archive
3.安装CUDNN
以下提供链接为官方网站:
https://developer.nvidia.com/rdp/cudnn-archive
在网站内选择与所安装的CUDA版本对应的版本。
将下载的压缩文件解压,复制文件进CUDA(默认路径:“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4”)文件夹覆盖替换掉原来的文件。
4.创建虚拟环境
win键搜索栏输入anaconda prompt找到并打开应用。
输入下面代码新建一个虚拟环境:
conda create -n pytorch-gpu python=3.9
注:pytorch-gpu为自定义的环境名字,可修改。python=3.9创建的是3.9的python版本。过程中输入y确认继续创建。
创建后输入代码进入所创建的环境中:
conda activate pytorch-gpu
5.安装pytorch
首先要确保在关闭加速软件的环境安装,因下载文件比较大且为外网,故安装较慢。在虚拟环境下输入以下命令安装:
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
注:以上教程为我另一篇博文教程的部分内容:
https://blog.csdn.net/ycb1718603735/article/details/145808291?spm=1011.2415.3001.10575&sharefrom=mp_manage_link
二、安装第三方库(ultralytics)
继续在所创建的虚拟环境下输入下方代码即可安装:
pip install ultralytics
安装完成如图所示:
三、下载yolov8源文件
因源码地址下载可能无法进入,这里提供百度网盘链接下载:
https://pan.baidu.com/s/1cBKvoHG2BSDrLTwCoQCFdg?pwd=1234
1.下载完成后解压缩文件(ultralytics-8.2.2.zip),点击全部解压。
2.右键文件夹ultralytics-8.2.2
3.点击显示更多选项,选择pycharm打开文件夹。
打开后界面如图所示:
注意此时右下角的解析器为系统解析器
四、添加解析器
1.点击pycharm的右下角的解析器
2.选择添加新的解析器,添加本地解析器。
3.打开文件找到你所创建的新虚拟环境的路径。
选择完成如图所示:
五、测试环境
自行选择一张图片放入项目中,运行下方代码进行测试:
from ultralytics import YOLO
model = YOLO('yolov8n.pt') # 加载预训练的 YOLOv8n 模型
source = 'hsq.jpg' #改为自己的图片路径
model.predict(source, save=True)
注:运行过程可能会出现numpy版本不兼容导致,可以继续在所创建的虚拟环境下输入下方代码:
conda install numpy==1.26.3
运行完成如图所示,可以根据保存的路径找到测试图片:
结语
教程到此结束,感谢各位的点赞收藏关注。利用GPU训练自己的数据集,进行目标检测的项目分享教程,敬请期待!