【Kaggle】开放数据集网站分享

一、解决验证码不显示问题

在输入邮箱账号填写完后,注册时会发现无法发送验证码,也没有地方填写验证码进行验证,出现下图提示:
在这里插入图片描述
这时我们需要安装浏览器的扩展,点击浏览器的扩展,获取扩展,在搜索框搜索header editor,选择获取下图所示的扩展,注意选择带FirefoxBar的:
在这里插入图片描述
获取完成后点击管理扩展,再点击导入和导出界面,复制输入下方url并粘贴进行下载:在这里插入图片描述
获取完成如下图所示,点击保存即可:
在这里插入图片描述

二、注册Kaggle

Kaggle提供了大量开放数据集以及各类数据竞赛,官网链接如下:
https://www.kaggle.com/
打开链接后如图所示,点击红色箭头处注册账号:
在这里插入图片描述
由于谷歌正常情况下是打不开的,这里我们选择邮箱登录:
在这里插入图片描述
此时可以正常输入邮箱账号密码进行验证并注册,会出现下方的人机身份验证:
在这里插入图片描述
注册并登录成功就可以正常使用,获取平台上的数据集文件。

三、获取数据集

打开图示界面找到你心仪的数据集,不熟悉的可以点击浏览器的翻译功能:
在这里插入图片描述
这里提供了多种下载方式,以zip文件下载可以直接获取压缩文件,也可复制代码打开python运行获取,这里以pychram为例。
在这里插入图片描述
在底部终端输入指令安装kagglehub库:

pip install kagglehub

打开pychram创建一个py文件,复制需要下载的数据集文件获取代码,粘贴到py文件中,点击运行即可获取数据集,文件保存地址也会在下方显示路径:
在这里插入图片描述

四、结语

教程到此结束,感谢各位的点赞收藏关注。在平台上你可以找到计算机视觉,自然语言处理,数据可视化等数据集,也可以找到各类模型,参加平台举办的比赛。

### 导入Kaggle平台上的公开数据集 为了在Kaggle平台上导入并使用公开的数据集,可以采用多种方法。一种常见的方式是从Google Cloud Storage (GCS) 加载TFRecord格式文件[^1]。 对于特定竞赛或公共数据集,可以直接通过API获取其路径: ```python import tensorflow as tf from kaggle_datasets import KaggleDatasets gcs_path = KaggleDatasets().get_gcs_path() filenames = tf.io.gfile.glob(gcs_path + "/tfrecords-jpeg-512x512/*.tfrec") dataset = tf.data.TFRecordDataset(filenames) ``` 上述代码展示了如何连接到存储于GCS中的TensorFlow记录(TFRecords),并通过`glob()`函数来匹配指定模式下的所有文件名称列表。之后创建了一个`TFRecordDataset`实例用于后续处理操作。 如果目标是读取CSV类型的简单表格型数据,则可利用Pandas库完成快速加载与预览: ```python import pandas as pd data = pd.read_csv('/kaggle/input/sample-data/train.csv') print(data.head()) ``` 这段脚本会从默认的工作目录下找到名为train.csv的文件,并将其内容转换成DataFrame对象以便进一步分析[^3]。 另外,在某些情况下可能需要更复杂的参数配置才能正确解析源文件的内容结构,如下所示的例子来自一次客户收入预测比赛中使用的技巧[^2]: ```python pd.read_csv( 'test.csv', usecols=[4, 8], dtype={'fullVisitorId': 'str'}, converters={ 'totals': lambda t: float(dict(eval(t))['transactionRevenue']) if 'transactionRevenue' in eval(t) else 0}) ``` 此段代码片段特别指定了要读取哪些列以及自定义转换器以适应特殊字段格式的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值