python深度学习:利用Anaconda新建虚拟环境下,GPU与CPU版本的Tensorflow安装


前言

因Tensorflow的安装对版本要求非常严谨,故推荐使用本文所安装的版本:
python:3.8
anaconda3
cuda:10.1
cudnn:7.6
numpy:1.18.0
protobuf:3.19.6
tensorflow-gpu:2.3.0

一、查看独立显卡

首先要确定电脑是否具有NVIDIA显卡,如果是AMD显卡或无显卡等,则只能安装CPU版本,查询方法按ctrl+shift+esc键打开任务管理器,点击性能查看GPU及其型号是否具备独立显卡。
在这里插入图片描述

二、安装软件

安装Anaconda3+Pycharm(已经安装的跳过)

这里就不详细介绍安装过程,以下提供两个安装包的网盘链接:
链接: Anaconda3
链接: Pycharm

三、GPU版本

1.创建虚拟环境

win键搜索栏输入anaconda prompt找到并打开应用。
输入下面代码新建一个虚拟环境:

conda create -n tensorflow python=3.8

注:tensorflow为自定义的环境名字,可修改。python=3.8创建的是3.8的python版本。(创建完别关闭界面,一直使用到最后!)
在这里插入图片描述
创建后输入代码进入所创建的环境中:

conda activate tensorflow

在这里插入图片描述

2.安装CUDA

首先查看显卡所支持的最高CUDA版本,按win+r键,输入cmd进入管理界面输入:nvidia-smi
如图所示:在这里插入图片描述

1.1未安装CUDA

需要更新下载的可以下方链接网站下载,推荐安装10.1版本,安装默认路径。
https://developer.nvidia.com/cuda-toolkit-archive

1.2已安装CUDA

已经安装CUDA的需要降低版本至10.1版本,可以继续在创建完虚拟环境后输入以下代码降低版本:

conda install cudatoolkit=10.1

在这里插入图片描述

2.安装CUDNN

2.1未安装CUDNN

以下提供链接为官方网站:
https://developer.nvidia.com/rdp/cudnn-archive
在网站内选择与所安装的CUDA版本对应的版本。
本文与安装的CUDA对应的CUDNN版本为7.6
将下载的压缩文件解压,复制文件进CUDA(默认路径:“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4”)文件夹覆盖替换掉原来的文件。
在这里插入图片描述

2.2已安装CUDNN

已安装CUDNN的需要对应的版本7.6,降低版本方法如下:

conda install cudnn==7.6

在这里插入图片描述

3.修改其他库的版本

在安装过程中,因其他第三方库版本不对应会导致报错。这里必须修改的两个如下,其他需要修改的按照提示即可(不需要的可忽略):

pip install protobuf==3.19.6
pip install numpy==1.18.0

4.安装Tensorflow-gpu

本文环境所对应的Tensorflow版本为2.3.0,安装代码如下:

pip install tensorflow-gpu==2.3.0

在这里插入图片描述

5.测试Tensorflow是否安装成功

等待安装完成后,依次输入命令验证是否安装成功:

python
import tensorflow as tf

运行完成如下图所示(运行成功才能运行下一步):
在这里插入图片描述
最后验证并查看机器算力,显示为True则安装成功:

 tf.test.is_gpu_available()

在这里插入图片描述

四、CPU版本

1.创建虚拟环境

win键搜索栏输入anaconda prompt找到并打开应用。
输入下面代码新建一个虚拟环境:

conda create -n tensorflow-cpu python=3.8

注:tensorflow-cpu为自定义的环境名字,可修改。python=3.8创建的是3.8的python版本。

创建后输入代码进入所创建的环境中:

conda activate tensorflow

2.安装Tensorflow-cpu

只需要在创建的虚拟环境下,输入以下代码即可安装:

pip install tensorflow==2.3.0

五、拓展

1.修改pip与conda源

win键搜索栏输入anaconda prompt找到并打开应用。输入以下代码可以加快下载速度:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

2.Tensorflow所对应的版本查询

链接: https://tensorflow.google.cn/install/source_windows
下滑可找到CPU与GPU版本的Tensorflow所对应的环境:
在这里插入图片描述

3.删除虚拟环境

首先要退出当前环境:

conda deactivate

再输入下方代码进行删除(过程中输入y进行确认):

conda remove -n tensorflow --all

注:tensorflow为所需要删除的环境变量名字,根据实际情况修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值