文章目录
前言
因Tensorflow的安装对版本要求非常严谨,故推荐使用本文所安装的版本:
python:3.8
anaconda3
cuda:10.1
cudnn:7.6
numpy:1.18.0
protobuf:3.19.6
tensorflow-gpu:2.3.0
一、查看独立显卡
首先要确定电脑是否具有NVIDIA显卡,如果是AMD显卡或无显卡等,则只能安装CPU版本,查询方法按ctrl+shift+esc键打开任务管理器,点击性能查看GPU及其型号是否具备独立显卡。
二、安装软件
安装Anaconda3+Pycharm(已经安装的跳过)
这里就不详细介绍安装过程,以下提供两个安装包的网盘链接:
链接: Anaconda3
链接: Pycharm
三、GPU版本
1.创建虚拟环境
win键搜索栏输入anaconda prompt找到并打开应用。
输入下面代码新建一个虚拟环境:
conda create -n tensorflow python=3.8
注:tensorflow为自定义的环境名字,可修改。python=3.8创建的是3.8的python版本。(创建完别关闭界面,一直使用到最后!)
创建后输入代码进入所创建的环境中:
conda activate tensorflow
2.安装CUDA
首先查看显卡所支持的最高CUDA版本,按win+r键,输入cmd进入管理界面输入:nvidia-smi
如图所示:
1.1未安装CUDA
需要更新下载的可以下方链接网站下载,推荐安装10.1版本,安装默认路径。
https://developer.nvidia.com/cuda-toolkit-archive
1.2已安装CUDA
已经安装CUDA的需要降低版本至10.1版本,可以继续在创建完虚拟环境后输入以下代码降低版本:
conda install cudatoolkit=10.1
2.安装CUDNN
2.1未安装CUDNN
以下提供链接为官方网站:
https://developer.nvidia.com/rdp/cudnn-archive
在网站内选择与所安装的CUDA版本对应的版本。
本文与安装的CUDA对应的CUDNN版本为7.6
将下载的压缩文件解压,复制文件进CUDA(默认路径:“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4”)文件夹覆盖替换掉原来的文件。
2.2已安装CUDNN
已安装CUDNN的需要对应的版本7.6,降低版本方法如下:
conda install cudnn==7.6
3.修改其他库的版本
在安装过程中,因其他第三方库版本不对应会导致报错。这里必须修改的两个如下,其他需要修改的按照提示即可(不需要的可忽略):
pip install protobuf==3.19.6
pip install numpy==1.18.0
4.安装Tensorflow-gpu
本文环境所对应的Tensorflow版本为2.3.0,安装代码如下:
pip install tensorflow-gpu==2.3.0
5.测试Tensorflow是否安装成功
等待安装完成后,依次输入命令验证是否安装成功:
python
import tensorflow as tf
运行完成如下图所示(运行成功才能运行下一步):
最后验证并查看机器算力,显示为True则安装成功:
tf.test.is_gpu_available()
四、CPU版本
1.创建虚拟环境
win键搜索栏输入anaconda prompt找到并打开应用。
输入下面代码新建一个虚拟环境:
conda create -n tensorflow-cpu python=3.8
注:tensorflow-cpu为自定义的环境名字,可修改。python=3.8创建的是3.8的python版本。
创建后输入代码进入所创建的环境中:
conda activate tensorflow
2.安装Tensorflow-cpu
只需要在创建的虚拟环境下,输入以下代码即可安装:
pip install tensorflow==2.3.0
五、拓展
1.修改pip与conda源
win键搜索栏输入anaconda prompt找到并打开应用。输入以下代码可以加快下载速度:
conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
2.Tensorflow所对应的版本查询
链接: https://tensorflow.google.cn/install/source_windows
下滑可找到CPU与GPU版本的Tensorflow所对应的环境:
3.删除虚拟环境
首先要退出当前环境:
conda deactivate
再输入下方代码进行删除(过程中输入y进行确认):
conda remove -n tensorflow --all
注:tensorflow为所需要删除的环境变量名字,根据实际情况修改。