总结
求二叉搜索树的公共祖先着实巧妙,利用二叉搜索树的性质十分简单;所有路径及左叶子之和都是在考DFS的应用,怎么考虑递归的条件,递归什么时候结束都得好好思考;其中第二题递归难点是参数,第三题递归难点是判断节点的结构。
题目I
题解
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(p->val<root->val and q->val<root->val){
return lowestCommonAncestor(root->left,p,q);
}
else if(p->val>root->val and q->val>root->val){
return lowestCommonAncestor(root->right,p,q);
}
else{
return root;
}
}
感悟
这道题非常巧妙,利用到了二叉搜索树的性质,即右子树的值都比root节点的值大,左子树的值都比root节点的值小;
具体算法为:
从根节点开始遍历树
如果节点 pp 和节点 qq 都在右子树上,那么以右孩子为根节点继续 1 的操作
如果节点 pp 和节点 qq 都在左子树上,那么以左孩子为根节点继续 1 的操作
如果条件 2 和条件 3 都不成立,这就意味着我们已经找到节 pp 和节点 qq 的 LCA 了
所以实际操作时,只需要判断val即可
题目II
题解
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
if(root==NULL){
return result;
}
string temp="";
help(root,temp,result);
vector<string> real;
for(int i=0;i<result.size();i++){
real.push_back(result[i].substr(2));
}
return real;
}
string help(TreeNode* p,string temp,vector<string> & result){
if(p->left==NULL and p->right==NULL){
string t=temp+"->"+to_string(p->val);
result.push_back(t);
return t;
}
else if(p->left==NULL and p->right!=NULL){
string t=temp+"->"+to_string(p->val);
help(p->right,t,result);
}
else if(p->right==NULL and p->left!=NULL){
string t=temp+"->"+to_string(p->val);
help(p->left,t,result);
}
else{
string t=temp+"->"+to_string(p->val);
help(p->left,t,result);
help(p->right,t,result);
}
return "";
}
感悟
因为是求根节点到叶节点的路径,自上而下所以想到的是深度遍历,也就是递归。利用了C++中的引用传递来对同一个vector改变值。每一次遍历到叶节点时,把结果放到最终的result里,如果当前节点不是子节点的话,根据当前节点的val更新从根节点到当前节点的路径,然后传参。
具体递归思路:
从根节点到叶节点的路径可以递归为,从根节点到左右子树的路径,左右子树又可以看作新的root节点及左右子树
题目III
题解
int sumOfLeftLeaves(TreeNode* root) {
int result=0;
traverse(root,result);
return result;
}
void traverse(TreeNode* p,int & result){
if(p!=NULL){
if(p->left!=NULL){
if(p->left->left==NULL and p->left->right==NULL){
result+=p->left->val;
}
else{
traverse(p->left,result);
}
}
if(p->right!=NULL){
traverse(p->right,result);
}
}
}
感悟
这道题也是考DFS,但是不同的是,之前题目的遍历,都是只需要考虑遍历到的当前节点,而这道题目则需要判断当前节点的左子节点是不是叶节点,相当于又往下一层了,这个if else让我着实想了好一会儿。