最大公约数gcd和最小公倍数lcm

众所周知,求最大公约数一般辗转相除,代码很短,主要在于证明

int gcd(int x,int y)
{
    if(y==0) return x;
    else return gcd(y,x%y);
}

也可以写为

int gcd(int a,int b)
{
	return b ? gcd(b,a%b) : a;
}

时间复杂度是 O ( l o g ( a + b ) ) O(log(a+b)) O(log(a+b)),比试除法划算多了。

代码很短,主要看证明。

一开始我想的是设 x x x y y y的最大公约数为 a a a
x = m × a x=m \times a x=m×a y = n × a y=n \times a y=n×a,(这里先保证 x > y x>y x>y)
m m m n n n为互质数
所以 x − y = ( m − n ) × a x-y=(m-n) \times a xy=(mn)×a
此时 x − y x-y xy x x x的最大公约数还是 a a a

但是这里就忽略了一个问题:

我不会证明当 m m m n n n为互质数的时候 ( m − n ) (m-n) (mn) m m m n n n中的任意一个数也是互质数!
所以此方法不够严谨。

当这个博客发出去第一次后,我突发奇想可以加上反证法:

已知 m m m n n n为互质数,若 ( m − n ) (m-n) (mn) m m m不为互质数
则有 ( m − n ) = q × t (m-n)=q \times t (mn)=q×t m = p × t m=p \times t m=p×t,( t t t为大于 1 1 1的整数)
那么 n = ( m − ( m − n ) ) = ( p − q ) × t n=(m-(m-n))=(p-q) \times t n=(m(mn))=(pq)×t
这样的话 n n n m m m就不是互质数了
所以假设不成立
这样的话 g c d ( x , y ) gcd(x,y) gcd(x,y)就等于 g c d ( y , x − y ) gcd(y,x-y) gcd(y,xy)
m o d mod mod就相当于是减去了 a a%b a就相当于 a a a减去了 k k k b b b
这样就省去了很多减的运算
辗转相除到最后,其中一个数为 0 0 0
另一个数即为原来两数的最大公因数

由定义“ ∀ x , y ∈ N \forall x,y\in \N x,yN g c d ( a , b ) × l c m ( a , b ) = a × b gcd(a,b) \times lcm(a,b)=a \times b gcd(a,b)×lcm(a,b)=a×b”可得
int lcm(int x,int y)
{
	return (a*b/gcd(a,b));
}

例题:
∙ \bullet [NOIP2001 普及组]最大公约数和最小公倍数问题
∙ \bullet CF1152C Neko does Maths

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值