一开始我都不知道费马是个人,以为和胡不归问题起名方法一样,是个浪费马的小定理所以叫费马小定理
内容
若 p p p是质数,则对于任意整数 a a a,有 a p ≡ a^p \equiv ap≡ a ( m o d a(mod a(mod p ) p) p)。
证明
反过来两边同时除以
a
a
a我们可以得到
a
p
−
1
≡
1
a^{p-1} \equiv1
ap−1≡1
(
m
o
d
(mod
(mod
p
)
p)
p),所以此时可以把该问题转换为证明
a
p
−
1
a^{p-1}
ap−1
m
o
d
mod
mod
p
=
1
p=1
p=1,随手举个例子也确实没什么大问题:
a
=
2
a=2
a=2,
p
=
3
p=3
p=3时
a
p
−
1
=
4
a^{p-1}=4
ap−1=4,
4
4
4
m
o
d
mod
mod
3
=
1
3=1
3=1,但是这只是个小数据的代入,所以不能看做是严格的证明。
a
p
−
1
a^{p-1}
ap−1
m
o
d
mod
mod
p
=
1
p=1
p=1可以转化为
p
×
x
=
a
p
−
1
+
1
p \times x=a^{p-1}+1
p×x=ap−1+1,然后这个方法我就证不下来了……
换个思路
g
c
d
(
a
,
p
)
=
1
gcd(a,p)=1
gcd(a,p)=1,考虑
1
×
a
,
2
×
a
,
3
×
a
,
…
…
(
p
−
1
)
×
a
1\times a,2\times a,3\times a,……(p-1)\times a
1×a,2×a,3×a,……(p−1)×a共
(
p
−
1
)
(p - 1)
(p−1)个数,将它们分别除以p,余数分别为
r
1
,
r
2
,
.
.
.
.
.
,
r
p
−
1
r_1,r_2,.....,r_{p-1}
r1,r2,.....,rp−1,为集合{
1
,
2
,
3...
p
−
1
1,2,3...p-1
1,2,3...p−1}的重新排列,即1.3…(p-1)在余数中恰好各出现一次;这是因为对于任两个相异
k
×
a
k\times a
k×a而言
(
k
=
1
,
2
,
3...
(
p
−
1
)
)
(k=1,2,3...(p-1))
(k=1,2,3...(p−1)),其差不是p的倍数(所以不会有相同余数),且任一个
k
×
a
k\times a
k×a亦不为
p
p
p的倍数(所以余数不为
0
0
0)。
因此
1
×
2
×
3.....
(
p
−
1
)
≡
(
1
×
a
)
×
(
2
×
a
)
.
.
.
.
(
(
p
−
1
)
×
a
)
(
m
o
d
1\times 2\times 3.....(p-1)\equiv (1\times a)\times (2\times a)....((p-1)\times a) (mod
1×2×3.....(p−1)≡(1×a)×(2×a)....((p−1)×a)(mod
p
)
p)
p)
即
W
≡
W
×
(
a
p
−
1
)
(
m
o
d
p
)
W \equiv W \times (a^{p-1}) (mod\ p)
W≡W×(ap−1)(mod p)
在这里
W
=
1
×
2
×
3
…
×
(
p
−
1
)
W=1 \times 2\times 3…\times (p-1)
W=1×2×3…×(p−1),且
g
c
d
(
W
,
p
)
=
1
gcd(W,p)=1
gcd(W,p)=1
整理后可得费马小定理。
而费马小定理只是素数判定的一个必要条件,素数一定满足费马小定理,满足费马小定理的数,却不一定是素数。
另外一个应用就是求逆元。