费马小定理看了等于没看证明

本文介绍了费马小定理,当p是质数,对于任意整数a,有ap≡a(mod p)。通过反证法和欧几里得算法证明该定理,并探讨其在素数判定和求逆元中的应用。
摘要由CSDN通过智能技术生成

一开始我都不知道费马是个人,以为和胡不归问题起名方法一样,是个浪费马的小定理所以叫费马小定理

内容

p p p是质数,则对于任意整数 a a a,有 a p ≡ a^p \equiv ap a ( m o d a(mod a(mod p ) p) p)

证明

反过来两边同时除以 a a a我们可以得到 a p − 1 ≡ 1 a^{p-1} \equiv1 ap11 ( m o d (mod (mod p ) p) p),所以此时可以把该问题转换为证明 a p − 1 a^{p-1} ap1 m o d mod mod p = 1 p=1 p=1,随手举个例子也确实没什么大问题: a = 2 a=2 a=2 p = 3 p=3 p=3 a p − 1 = 4 a^{p-1}=4 ap1=4 4 4 4 m o d mod mod 3 = 1 3=1 3=1,但是这只是个小数据的代入,所以不能看做是严格的证明。
a p − 1 a^{p-1} ap1 m o d mod mod p = 1 p=1 p=1可以转化为 p × x = a p − 1 + 1 p \times x=a^{p-1}+1 p×x=ap1+1,然后这个方法我就证不下来了……

换个思路

g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1,考虑 1 × a , 2 × a , 3 × a , … … ( p − 1 ) × a 1\times a,2\times a,3\times a,……(p-1)\times a 1×a,2×a,3×a,(p1)×a ( p − 1 ) (p - 1) (p1)个数,将它们分别除以p,余数分别为 r 1 , r 2 , . . . . . , r p − 1 r_1,r_2,.....,r_{p-1} r1,r2,.....,rp1,为集合{ 1 , 2 , 3... p − 1 1,2,3...p-1 1,2,3...p1}的重新排列,即1.3…(p-1)在余数中恰好各出现一次;这是因为对于任两个相异 k × a k\times a k×a而言 ( k = 1 , 2 , 3... ( p − 1 ) ) (k=1,2,3...(p-1)) (k=1,2,3...(p1)),其差不是p的倍数(所以不会有相同余数),且任一个 k × a k\times a k×a亦不为 p p p的倍数(所以余数不为 0 0 0)。
因此 1 × 2 × 3..... ( p − 1 ) ≡ ( 1 × a ) × ( 2 × a ) . . . . ( ( p − 1 ) × a ) ( m o d 1\times 2\times 3.....(p-1)\equiv (1\times a)\times (2\times a)....((p-1)\times a) (mod 1×2×3.....(p1)(1×a)×(2×a)....((p1)×a)(mod p ) p) p)
W ≡ W × ( a p − 1 ) ( m o d   p ) W \equiv W \times (a^{p-1}) (mod\ p) WW×(ap1)(mod p)
在这里 W = 1 × 2 × 3 … × ( p − 1 ) W=1 \times 2\times 3…\times (p-1) W=1×2×3×(p1),且 g c d ( W , p ) = 1 gcd(W,p)=1 gcd(W,p)=1
整理后可得费马小定理。
而费马小定理只是素数判定的一个必要条件,素数一定满足费马小定理,满足费马小定理的数,却不一定是素数。
另外一个应用就是求逆元。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值