用python实现过滤存在大部分空白背景的图片

本文介绍如何利用Python的PIL库和Counter工具,通过分析图像像素值来高效过滤掉大部分空白背景的图片。通过获取图像像素值并统计出现频率,判断前几个高频像素值是否超过特定阈值,从而筛选图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PYTHON的PIL和Counter实现过滤大部分空白背景的图片

需求

有以下三张图,目标是筛选出img2,排除掉img1和img3。

在这里插入图片描述
最初考虑过用for循环遍历每一个像素值,然后对空白像素值进行统计,占比达到总像素点的一定百分比就过滤掉,但是这样会大大的增加计算量,于是打算另辟蹊径。。

准备

用到的函数有:

  1. Image中的getdata(),它能直接获取图像的像素值,并且每个像素点的四个像素值以元组的形式呈现。getdata()有band参数,默认band是所有,当band=0时,仅返回‘r’ band,即只返回RGB中的R值。
  2. collections中的Counter,他可以对列表中的元素进行计数,其中的max_common(n)可以返回前n个计数最多的元素。
基本思路

首先获取图像的像素值,然后用max_common获取该图像的计数前几的像素值大小,若前几的像素值均大于200,那么说明这个图像空白值占绝大多数,从而实现过滤。

实现
from PIL import Image
import numpy as np, pandas as pd
from collections import Counter
img1 = Image
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值