浅析 hyper -- 新一代虚拟机技术?

容器技术的快速发展,挤占了传统虚拟机技术的很多地盘。没办法,在启动速度和运行性能上,容器实在有着太多的优势,而虚拟机技术的发展实在太过缓慢。

现在,hyper_ 团队 推出了启动速度可以跟容器媲美的新一代虚拟机技术 -- hyper。

简介

hyper 是基于 go 实现的开源项目,代码托管在 github 上。。

简单的说,hyper = Hypervisor + Kernel + Docker Image,本质上还是一种虚拟机技术,只不过是应用中心(app-centric)的虚拟机。

hyper 将容器运行在了虚拟机里,只不过这个虚拟机是精简过的(基于 qboot),可以快速启动停止的虚拟机。目前,可以运行在 KVM 上,操作系统要求为比较新的 debian/ubuntu、centos 等,内核建议为 4.0.1,docker 版本至少为 1.5.0,qemu 至少为 2.0。

hyper 每个虚拟机中可以同时运行多个容器进程,借用了 kubernetes 中的 pod 的概念。每个虚拟机就是一个 pod(使用外部的 podfile, JSON 或 YAML 格式,来定义包括哪些应用),其中的运行的容器进程共享命名空间(不使用命名空间隔离),但用 mount 命名空间来隔离内部多个镜像的 root 文件系统。

优势

优势很明显,就是容器技术一直缺乏的,跟传统虚拟机相关的优势:

  • 可以平滑地跟已有基于虚拟机的技术和平台进行整合;
  • 大大提高了容器已有隔离技术的安全性,特别是不需要共享内核;
  • 不依赖已有容器技术(Docker daemon, LXC, Cgroup, Namespace),只需要 MOUNT 命名空间支持。

劣势

劣势也很明显:

  • 增加了额外的资源消耗,包括额外的内核和进程;
  • 并非像宣称的那样成熟,目前还只是 0.1 版本;
  • 硬盘 IO 性能没公布,猜测会跟虚拟机类似;
  • 暂时不支持分层文件系统;

总之,生态环境还有待建立。

安装使用

安装

很简单,直接下载 bash 脚本安装。

# curl -sSL https://hyper.sh/install | bash

使用

# docker pull ubuntu:14.04

# hyper run ubuntu:14.04
POD id is pod-IEKZbVtzef
root@ubuntu:14:/#
...

# hyper list
POD ID                      POD Name             VM name    Status
 pod-IEKZbVtzef                        ubuntu    14.04-5551572656

支持的命令跟 docker 很类似,包括 run、start、stop、attach、exec、create、replace、rm、info、list 等等,更多信息可以参考 官方文档

原理

hyper

hyper 的组件十分简单:

  • hyper 提供命令行接口
  • hyperd 提供核心维护引擎,支持 REST
  • 虚拟机实例:hyperkernel 作为 guest os 的kernel;hyperstart 作为启动 init 服务。

展望

实际上,现在已有一些类似的技术,包括两大类:

  • 直接基于容器进行进一步封装,CoreOS、RancherOS、Photon 等,实际上还是直接跑容器,跑的应用还是在容器内;
  • Intel 的 Clear Container 跟 hyper 很像,都是直接运行一个轻量级的虚拟机,然后里面再做事。

这些技术都有各自的优缺点,以及各自适合的应用场景,在很长一段时间内将会共存,甚至出现更多适合云计算时代场景下的虚拟化技术。

转载请注明:http://blog.csdn.net/yeasy/article/details/46648303

### DeepSeek-R1 技术架构详解 #### 架构概述 DeepSeek-R1 是一种融合了监督学习与强化学习的混合模型体系结构,旨在提供更为强大和实用的功能[^1]。该架构的设计目标是在保持高效性能的同时实现更高的灵活性。 #### 数据收集与预训练阶段 为了优化初始状态并提高后续迭代效率,DeepSeek-R1 使用了大量的冷启动数据来调整基础版本——即 DeepSeek-V3-Base 模型参数,以此作为强化学习过程的良好开端[^2]。这些高质量的数据集对于构建稳健可靠的机器学习系统至关重要。 #### 蒸馏技术的应用 通过引入先进的蒸馏方法论,DeepSeek-R1 成功实现了从小型化到大型化的多尺度建模能力转换。具体而言,团队已经发布了多个不同大小(从7B至30B)经过精心压缩但仍保留核心功能特性的轻量化变体供公众下载使用[^3]。这种做法既促进了资源的有效分配也加速了开发周期。 #### 组合优势 结合上述要素,最终形成的 DeepSeek-R1 结构能够有效地平衡计算成本与预测精度之间的关系;同时支持广泛的任务场景需求,包括但不限于自然语言处理、图像识别以及特定行业领域内的复杂挑战解决。 ```python # Python伪代码展示部分关键组件初始化逻辑 class DeepSeekR1: def __init__(self, base_model_path="path/to/deepseek_v3_base"): self.base_model = load_pretrained(base_model_path) self.distilled_models = {} def add_distilled_version(self, size_in_billion_params, model_weights): key = f"{size_in_billion_params}B" distilled_model = create_compact_model(size_in_billion_params) distilled_model.load_state_dict(model_weights) self.distilled_models[key] = distilled_model def main(): deepseek_r1_instance = DeepSeekR1() # 假设我们有一个预先准备好的权重文件路径列表 weight_files = ["weights_7b.pth", "weights_30b.pth"] sizes = [7, 30] for i in range(len(sizes)): deepseek_r1_instance.add_distilled_version(sizes[i], torch.load(weight_files[i])) if __name__ == "__main__": main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值