质因数是指一个正整数可以分解成若干个质数的乘积,其中每个质数都是这个正整数的因数。例如,数字 12 可以分解成 2 × 2 × 3 的形式,其中 2 和 3 都是质数,因此它们是数字 12 的质因数。
算法一:暴力枚举法
思路:从2到n-1依次判断n是否能够被整除,如果能够被整除,则说明存在一个质因数,将其保存下来,并将n除以该质因数,然后继续对n进行同样的操作。重复上述步骤,直到n变为1,最终得到所有的质因数。
代码实现:
def prime_factor(num):
factors = []
i = 2
while i <= num:
if num % i == 0:
factors.append(i)
num = num // i
i = 2
else:
i += 1
return factors
优劣分析:
暴力枚举法的时间复杂度为O(n),当n较小时,该算法具有一定的优势。然而当n较大时,时间复杂度较高,算法效率较低。
算法二:分解质因数法
思路:对于一个正整数n,如果其存在质因数p,则n可以表示为n=p*q,其中q为除p外的其他质因数的乘积。因此,我们可以先判断2是否是n的质因数,如果是,则将其保存下来,并将n除以2,继续进行同样的操作,直到n为奇数,然后从3开始,依次判断所有的奇数是否是n的质因数。由于n除以每个质因数后都会变得更小,因此当n不是质数时,分解质因数后得到的所有质因数必然都小于或等于n的平方根。
代码实现:
def prime_factor(num):
factors = []
i = 2
while i * i <= num:
if num % i == 0:
factors.a

本文介绍了质因数的概念,以及暴力枚举法、分解质因数法和试除法三种求解正整数质因数的方法。暴力枚举法效率低但适用于小数据,分解质因数法和试除法时间复杂度相同但分解质因数法更高效,常用于处理大数据。
最低0.47元/天 解锁文章
1万+





