分布式训练的数学原理

一、写在前面

        深度学习模型其实就是由数(权重、偏置等)和数与数之间的运算构成,其中的数学原理包括矩阵运算(线性代数)、求导(高等数学)、概率计算(概率论)等。其中矩阵运算(线性代数)是其中十分重要的基础。

        本文将解释分布式训练中的数据分布式、模型分布式(并行模式、串行模式)的数学原理,这是分布式训练的基础。

二、分布式训练的数学原理

1、矩阵运算基础回顾

        我们首先回顾一下矩阵运算的基础,假设有以下的矩阵:

A\epsilon R^{n\times m}, B\epsilon R^{n\times m}, C\epsilon R^{n\times m}, W\epsilon R^{m\times n}, Y\epsilon R^{n\times n}

        矩阵点乘:

A\cdot W=Y

        则有其中:

y_{i,j}=\sum_{k=0}^{m}a_{i,k}\times w_{k,j}

        矩阵相加:

A+B=C

        其中:

c_{i,j}=a_{i,j}+b_{i,j}

2、数据分布式训练数学基础

        假设:模型输入为X\epsilon R^{n\times m},其中x_{i,:},i\epsilon[0,m-1]表示一条独立的数据,即X表示一个数量为n的数据集;W\epsilon R^{m\times n}是模型的权重,Y\epsilon R^{n\times n}是模型的输出。

        数据分布式训练即将数据进行拆分,分别送到不同的机器(或GPU)上的模型进行前馈计算,然后对所有的梯度进行汇总平均,再进行模型的参数更新。其中数据分布式训练包括DP和DDP两种,这里不展开描述。

        上述的过程可以用以下的数学表达式进行描述(不考虑反馈过程,且假设只有两张GPU显卡):

        对于GPU0:X_{0:\frac{n}{2}-1,:}\cdot W=Y_{0:\frac{n}{2}-1,:}

        对于GPU1:X_{\frac{n}{2}:n-1,:}\cdot W=Y_{\frac{n}{2}:n-1,:}

        进行横向拼接生成完整的数据训练:

  Y= Concat(Y_{0:\frac{n}{2}-1,:} ,Y_{\frac{n}{2}:n-1,:})

        通过这种方式可以显著减少每一个epoch的迭代次数,达到加速模型训练的目的。

3、模型分布式训练并行策略数学基础

        

        假设:模型输入为X\epsilon R^{n\times m},其中x_{i,:},i\epsilon[0,m-1]表示一条独立的数据,即X表示一个数量为n的数据集;W\epsilon R^{m\times n}是模型的权重,Y\epsilon R^{n\times n}是模型的输出。

        模型分布式训练的并行策略即将权重进行拆分,分别送到不同的机器(或GPU)上的模型进行前馈计算,然后对所有的梯度进行汇总平均,再进行模型的参数更新。

        上述的过程可以用以下的数学表达式进行描述(不考虑反馈过程,且假设只有两张GPU显卡):

        对于GPU0:X\cdot W_{:, 0:\frac{n}{2}-1}=Y_{:, 0:\frac{n}{2}-1}

        对于GPU1:X\cdot W_{:, \frac{n}{2}:n-1}=Y_{:, \frac{n}{2}:n-1}

        进行竖向拼接生成完整的训练:

  Y= Concat(Y_{:, 0:\frac{n}{2}-1} ,Y_{:, \frac{n}{2}:n-1})

        通过这种方式,可以显著减少占用每一台机器(或GPU)的内存目的。

4、模型分布式训练串行策略数学基础

        这个其实就是将模型按照计算图之间逻辑上的先后关系拆分模型,然后分配到不同的机器(或GPU)上,通过接力的方式完成整个模型的计算。

        通过这种方式,可以显著减少占用每一台机器(或GPU)的内存目的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值