人脸活体检测
文章平均质量分 86
YEGE学AI算法
From Zero To Hero!
展开
-
[人脸活体检测] 论文:Searching Central Difference Convolutional Networks for Face Anti-Spoofing
文章目录Searching Central Difference Convolutional Networks for Face Anti-Spoofing**1 导读****2 简介****3 方法****中心差分卷积神经网络CDCN:****搜索一个中心差分卷积神经网络CDCN++:****4 实验****5 贡献****6 总结**Searching Central Difference Convolutional Networks for Face Anti-Spoofing在CVPR2020由原创 2020-12-08 17:29:42 · 2260 阅读 · 1 评论 -
[人脸活体检测] 论文:Aurora Guard- Real-Time Face Anti-Spoofing via Light Reflection
Aurora Guard- Real-Time Face Anti-Spoofing via Light Reflection论文简介该论文提出的方法已经部署到百万台终端,整篇文章底气十足。作者设计多任务网络,包含两个分支,一个用于预测深度图并做二分类,另一个回归光验证码,只有被识别对象同时通过两个分支的考验,才能被判断为活体,如下图;本人感觉满篇全是亮点:又快又准的深度图预测、无需额外硬件的光验证码校验机制、Light presentation回归网络以及不知道怎么采集却又超精确的深度图ground原创 2020-12-03 20:43:16 · 1021 阅读 · 0 评论 -
[人脸活体检测] 论文:Face De-Spoofing: Anti-Spoofing via Noise Modeling
Face De-Spoofing: Anti-Spoofing via Noise Modeling论文简介将非活体人脸图看成是加了噪声后失真的x,用残差的思路检测该噪声从而完成分类。文章引用量:40+推荐指数:✦✦✦✦✧[4] Jourabloo A, Liu Y, Liu X. Face de-spoofing: Anti-spoofing via noise modeling[C]//Proceedings of the European Conference on Computer Vi原创 2020-12-03 20:27:53 · 969 阅读 · 0 评论 -
[人脸活体检测] 论文: Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision
Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision论文简介与人脸生理相关的rppG信号被研究者广泛运用于活体检测,文[3]中使用了CNN和RNN分别预测人脸深度和rppG信号提升了活体检测的精度。文章引用量:50+推荐指数:✦✦✦✦✦[3] Liu Y, Jourabloo A, Liu X. Learning deep models for face anti-spoofing: Binary原创 2020-12-03 20:15:35 · 844 阅读 · 1 评论 -
[人脸活体检测] 论文:Face Anti-Spoofing Using Patch and Depth-based CNNs
Face Anti-Spoofing Using Patch and Depth-based CNNs这篇文章是人脸防伪领域比较容易理解,适合入手的一篇,主要运用到了两个CNN网络,根据输入图像的细节特征以及深度图特征来进行判别。一、 论文概述由于直接基于RGB纹理分类的方法非常容易过拟合,而像屏幕中的人脸一般是平的,估计不出深度信息,所以patch and depth-based CNNs方法将深度信息和RGB特征进行融合。文章引用量:50+推荐指数:✦✦✦✧✧[2] Atoum Y, Li原创 2020-12-03 20:04:37 · 1020 阅读 · 1 评论 -
[人脸活体检测] 论文:Learn Convolutional Neural Network for Face Anti-Spoofing
[人脸活体检测] 论文:Learn Convolutional Neural Network for Face Anti-Spoofing论文简介这是最早期CNN用于活体检测的文章,在此之前都是手动提取特征,文章采用了人脸检测预处理,多尺度人脸增强,时域人脸图像增强等技术训练了一个分类网络。文章引用量:100+推荐指数:✦✦✦✧✧[1] Yang J, Lei Z, Li S Z. Learn convolutional neural network for face anti-spoofing[原创 2020-12-03 19:42:25 · 1714 阅读 · 0 评论 -
[人脸活体检测] 人脸活体检测综述
人脸活体检测综述1. 什么是活体检测?–> 判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像 以及 面具 等)2. 为什么需要活体检测?–> 在金融支付,门禁等应用场景,活体检测一般是嵌套在人脸检测与人脸识别or验证中的模块,用来验证是否用户真实本人3. 活体检测对应的计算机视觉问题:–> 就是分类问题,可看成二分类(真 or 假);也可看成多分类(真人,纸张攻击,屏幕攻击,面具攻击)Anti-spoofing 1.0 时转载 2020-12-03 19:30:25 · 1366 阅读 · 3 评论 -
[人脸活体检测] 人脸活体检测简介
人脸活体检测一、简介 随着人脸识别、人脸解锁等技术在金融、门禁、移动设备等日常生活中的广泛应用,人脸防伪/活体检测(Face Anti-Spoofing)技术在近年来得到了越来越多的关注。设想一下,假设你的Face Verification算法做的再漂亮,而Face Anti-Spoofing做的很烂,如果这个时候恰恰有某位同学拿着马云脸的视频去刷了支付宝,那…人脸验证(Face Verification):意思就是说,给定两张图,算法要判断出这两张图是不是同一个人,这是近年来一个非常热门的研究原创 2020-12-03 19:24:35 · 2335 阅读 · 0 评论