HDU 2509 Be the Winner(尼姆博弈)

Be the Winner

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2308    Accepted Submission(s): 1257


Problem Description
Let's consider m apples divided into n groups. Each group contains no more than 100 apples, arranged in a line. You can take any number of consecutive apples at one time.
For example "@@@" can be turned into "@@" or "@" or "@ @"(two piles). two people get apples one after another and the one who takes the last is 
the loser. Fra wants to know in which situations he can win by playing strategies (that is, no matter what action the rival takes, fra will win).
 

Input
You will be given several cases. Each test case begins with a single number n (1 <= n <= 100), followed by a line with n numbers, the number of apples in each pile. There is a blank line between cases.
 

Output
If a winning strategies can be found, print a single line with "Yes", otherwise print "No".
 

Sample Input
  
  
2 2 2 1 3
 

Sample Output
  
  
No Yes
 

Source



#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int main()
{
    int n;
    int T;
    while (scanf("%d",&n)!=EOF)
    {
        __int64 ans = 0;
        __int64 tmp;
        int cnt = 0;
        for (int i = 0; i < n; i++)
        {
            scanf ("%I64d", &tmp);
            if(tmp == 1)
            {
                cnt++;
            }
            ans = ans^tmp;
        }
        if(cnt == n)
        {
            if(n%2 == 1)
            {
                printf("No\n");
            }
            else
            {
                printf("Yes\n");
            }
        }
        else
        {
            if (ans == 0)
            {
                printf("No\n");
            }
            else
            {
                printf("Yes\n");
            }
        }

    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值